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@ Given a set of states S ={sg, 1,52, - - - , s»} @ Markov process starts in one
of the states s; and moves to another state s;.

@ Denote by P;; the probability of moving from state s; to s;. (moving from
one state to another is a step)

@ P;; does not depend on what state the chain was in before the current
state.

@ The probabilities P;; are called transition probabilities.
@ A process can remain in the current state. This occurs with probability P; ;.
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Consider an inheritance trait that is governed by a pair of genes, Each of
which may be of two types, G and g. The possible combinations are GG, gg,
and Gg (equivalent to gG). One gene is inherited from each parent. When GG
and Gg types are indistinguishable we say G is the dominant gene. Dominant
individuals have GG genes and recessive individuals have gg genes. Gg
combinations are hybrid. Consider combining a hybrid with other genetic
types.

@ combining a dominant and hybrid there is an equal chance of getting a

dominant and hybrid but no chance of resessive.

@ combining a recessive and a hybrid there is an equal chance of getting a
recessive and a hybrid but not a dominant

@ combining two hybrids there is a 1 in 4 chance of obtaining a dominant, a
1in 4 of a recessive and a 1 in 2 chance for a hybrid.



Denote the three possible genetic states as S = {GG, Gg, gg}. Now consider
repeated combination of individuals with known genetic state with a hybrid
individual. Given the genetic probabilities above we can construct the matrix

of transition probabilities:
5 25 0
P=|5 5 5
0 25 5

@ The first column represents the probability of the outcome of combining
GG with a hybrid.

@ The second column represents the probability of the outcome of
combining Gg with a hybrid

@ Column 3 represents the probability of the outcome of combining a gg
with a hybrid.



@ A probability vector with r components is a vector whose entries are
non-negative and sumto 1.

@ In the context of Markov chains the i component of a probability vector
is the probability that the chain starts in state i.

Let P be the transition matrix of a Markov chain, and let u be the probability
vector which represents the starting distribution. Then the probability that the
chain is in state s; after n steps is the ith entry in the vector

u" = pry




@ An absorbing state s; is a state that is impossible to leave (P;; = 1.0).

1
@ A Markov chain is called absorbing if it has at least one absorbins state,
and if from every state it is possible to, eventually, reach an absorbing
state.

@ A state that is not absorbing is called transient.



@ A man walks along a 4 block stretch of road.

@ If he is at corner 1, 2, or 3 he either goes forward or back with equal
probability. (he is drunk)

@ If he arrives at corner 0 he is home. If he arrives at corner 4 he is at a
bar. ( he remains in either place)

We can construct a matrix of transition probabilities.

15 0 0 0
0 0 5 0
P=|0 5 0 5 0
0 0500
0 0 0 51
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@ The first column contains the probabilities of transition to other states
from state 0 or home. This is an absorbing state.

@ The second column contains probabilities of moving to other corners from
corner 1. He has an equal likelyhood of going home or to corner 2.

@ Element j of column i contains the probability of moving from corner i to
corner j.

@ The last column represents the probability of staying at the bar. Another
absorbing state.
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@ start at any webpage

@ randomly select a link and follow
@ repeat

@ what are the outcomes?

The outcomes of such a random walk are:
@ a dead end on a page with no outgoing links

@ a cycle where you end up where you began: known as a Markov chain or
Markov process.

@ The limiting probability that an infinitely dedicated random surfer visits
any particular page is its PageRank.

@ A page has high rank if other pages with high rank link to it.
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@ Let W be the set of Web pages that can reached by following a chain of
hyperlinks starting from a page at Google.

@ Let n be the number of pages in W.

@ The set W actually varies with time, by the end of 2005, n was over 10
billion.

@ Let G be the n x n connectivity matrix of W, thatis, G;; is 1 if there is a
hyperlink from page i to page j and 0 otherwise.

@ Let H be G with each row i divided by the number of outgoing links from
node i.

@ The matrix H is huge, but very sparse; its number of nonzeros is the total
number of hyperlinks in the pages in W.
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@ Let ¢ and r; be the column and row sums of G, respectively. That is,
C]‘ = Z Gi,]', ri = Z Gi,]‘
i j

@ Then ¢, and r, are the indegree and outdegree of the k-th page. In other
words, ¢ is the number of links into page k and r, is the number of links
from page k.

@ Let p be the fraction of time that the random walk follows a link.
@ Google typically takes this to be p = 0.85.

@ Then 1 —p is the fraction of time that an arbitrary page is chosen.
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@ Let A be an n x n matrix whose elements are A;; = pG;;/c; + & where
5= (1-p)/n.

@ This matrix is the transition matrix of the Markov chain of a random walk!

@ Notice that A comes from scaling the connectivity matrix by is column
sums.

@ The j-th column is the probability of jumping from the j-th page to the
other pages on the Web.



Can write A, the transition matrix, as

A =pGD +ez"
where ¢ is the vector of all ones and where ez’ account for dead linked pages
and

D]']' = 1/C]‘ (or 0) zZj = ) (or 1/1’1)
Then x = Ax can be written

(I—pGD)x = ( T

z'x)e =ye
and we can scale x such thaty =1



Find x = Ax and the elements of x are Google’s PageRank. Remember
n > 10'° (as of 2005) and growing (a Google blog post claimed n > 10'? in
2008) .

For any particular query, Google finds pages on the Web that match the
query. The pages are then listed in the order of their PageRank.
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@ Find x = Ax and the elements of x are Google’s PageRank.

@ For a matrix A, the scalar-vector pairs (A, v) such that Av = Av are
eigenvalue-eigenvectors.

@ Topic #1: Power Method
@ Topic #2: Singular Value Decomposition (SVD)



Suppose that A is n x n and that the eigenvalues are ordered:

A1l > A2l = Az = -+ = A

Assuming A is nonsingular, we have a linearly independent set of v; such that
Avi = )\ivi.

Computing the value of the largest (in magnitude) eigenvalue, A;. I




Take a guess at the associated eigenvector, xo. We know

Then compute

X0 = o+ -+ ey
Since the guess was random, start with all ¢; = 1:
x(0
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Or x(k) :Akx(o). Or

:Ak’01—|—...+Akvn
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1+ for k=1 to kmax

2 y=Ax
3 r=oy)/dx)
4 x=y/lYll

@ often ¢(x) = x; is sufficient
@ ris an estimate of the eigenvalue; x the eigenvector



@ We now want to find the smallest eigenvalue
@ Av=M = Alv=10

@ So “apply” power method to A~! (assuming a distinct smallest
eigenvalue)

Py x (k+1) — A~ 1
@ Easierwith A =LU
@ Update RHS and backsolve with U:

Uxek+D — =1, (0



SVD uses in practice:

@ Search Technology: find closely related documents or images in a
database

@ Clustering: aggregate documents or images into similar groups
@ Compression: efficient image storage
@ Principal axis: find the main axis of a solid (engineering/graphics)

@ Summaries: Given a textual document, ascertain the most representative
tags

@ Graphs: partition graphs into subgraphs (graphics, analysis)

u]
o)
I
ul
it



SVD takes an m x n matrix A and factors it:

A=UsvVT

where U (m x m) and V (n x n) are orthogonal and S (m x n) is diagonal.

A is orthogonal if ATA = AAT = 1. I

S is made up of “singular values”:

= =0,=0
Here, r = rank(A) and p = min(m, n).



We want to factorize A into U, S, and V. First step: find V. Consider
A=UsvT
and multiply by AT
ATA = (usvVTT(usv™) = vsTuTusv’®

Since U is orthogonal
ATA =vs*vT
This is called a similarity transformation.

Matrices A and B are similar if there is an invertible matrix Q such that

Q 'AQ=B

Similar matrices have the same eigenvalues. l




Bv = Av
QO 'AQu=Mv
AQu =AQu

Aw = Aw.
Further, if v is an eigenvector of B, Qu is an eigenvector of A.
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Need A = USVT

Look for V such that ATA = VS?VT. Here S? is diagonal.

If ATA and S? are similar, then they have the same eigenvalues. So the
diagonal matrix S? is just the eigenvalues of ATA and V is the matrix of

eigenvectors. To see the latter, note that since S? is diagonal, the eigenvectors

are ¢;, and V7e; is just the i column of V.



Now consider

A=UsvT
and multiply by AT from the right

AAT = (usvhy(usvhT = usv'vstu’
Since V is orthogonal

AAT =ustu’
Now U is the matrix of eigenvectors of AAT.
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We get

Uy

Um

01

Oy

Q>



Decompose

First construct ATA:

aa=15 8 7)=15 7

Eigenvalues: Ay =8 and A, = 2. So

52=[g g} = S:[zﬁ
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Now find VT and U. The columns of VT are the eigenvectors of ATA.
@ A\ =8: (ATA — MI)v; =0

[3 oo = oo - n-[]-[

Vv2/2

e N\ =2 (ATA — 7\21)"02 =0

:>3—3
-3 3

V[ v

:|02:0 = |:é _01:|02:O = 02:|:1:|
@ Finally:
V2/2 }

QKA
V2/2

o P = Dac
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Now find U. The columns of U are the eigenvectors of AAT.
o }\1 =8: (AAT — 7\11)141 =0

=>0 O-u—O =
0 —6/ '

01 u =0 _ [
_0 0_ 1= = I/ll—-o
@ A\ =2: (AAT — N Dupy =0
:>60_u—0 = 1 0] =0 = __0
0 0] 2" 0 o]~ =1
@ Finally:
u:

0
A= [—01 g] [25@ H [— V2/2 ﬁ/z]

v2/2 V2/2 1]
BT r— - = = E 9ac

@ Together:



fewer entries...

How can we actually use A = USVT? We can use this to represent A with far

Notice what A = USVT looks like:

A = 01u10] + 02UV + - + 0,0 + Oty g0 + o+ Oupv;
This is easily truncated to

T T T
A = o1u10] + 02UV, + - - - + OpULD,

see svd_test.py
What are the savings?

@ A takes m x n storage

@ using k terms of U and V takes k(1 + m + n) storage e
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