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Markov Chains

Given a set of states S = {s0, s1, s2, · · · , sn} a Markov process starts in one
of the states si and moves to another state sj.
Denote by Pj,i the probability of moving from state si to sj. (moving from
one state to another is a step)
Pj,i does not depend on what state the chain was in before the current
state.
The probabilities Pj,i are called transition probabilities.
A process can remain in the current state. This occurs with probability Pi,i.
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Genetic Example

Consider an inheritance trait that is governed by a pair of genes, Each of
which may be of two types, G and g. The possible combinations are GG, gg,
and Gg (equivalent to gG). One gene is inherited from each parent. When GG
and Gg types are indistinguishable we say G is the dominant gene. Dominant
individuals have GG genes and recessive individuals have gg genes. Gg
combinations are hybrid. Consider combining a hybrid with other genetic
types.

combining a dominant and hybrid there is an equal chance of getting a
dominant and hybrid but no chance of resessive.
combining a recessive and a hybrid there is an equal chance of getting a
recessive and a hybrid but not a dominant
combining two hybrids there is a 1 in 4 chance of obtaining a dominant, a
1 in 4 of a recessive and a 1 in 2 chance for a hybrid.

David Semeraro (NCSA) CS 357 April 10, 2014 3 / 31



Genetic Example

Denote the three possible genetic states as S = {GG, Gg, gg}. Now consider
repeated combination of individuals with known genetic state with a hybrid
individual. Given the genetic probabilities above we can construct the matrix
of transition probabilities:

P =

.5 .25 0
.5 .5 .5
0 .25 .5


The first column represents the probability of the outcome of combining
GG with a hybrid.
The second column represents the probability of the outcome of
combining Gg with a hybrid
Column 3 represents the probability of the outcome of combining a gg
with a hybrid.
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Long term behavior

A probability vector with r components is a vector whose entries are
non-negative and sum to 1.
In the context of Markov chains the ith component of a probability vector
is the probability that the chain starts in state i.

Theorem
Let P be the transition matrix of a Markov chain, and let u be the probability
vector which represents the starting distribution. Then the probability that the
chain is in state si after n steps is the ith entry in the vector

u(n) = Pnu
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Absorbing states

An absorbing state si is a state that is impossible to leave (Pi,i = 1.0).
A Markov chain is called absorbing if it has at least one absorbins state,
and if from every state it is possible to, eventually, reach an absorbing
state.
A state that is not absorbing is called transient.
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Drunkards Walk

A man walks along a 4 block stretch of road.
If he is at corner 1, 2, or 3 he either goes forward or back with equal
probability. (he is drunk)
If he arrives at corner 0 he is home. If he arrives at corner 4 he is at a
bar. ( he remains in either place)

We can construct a matrix of transition probabilities.

P =


1 .5 0 0 0
0 0 .5 0 0
0 .5 0 .5 0
0 0 .5 0 0
0 0 0 .5 1



David Semeraro (NCSA) CS 357 April 10, 2014 7 / 31



Drunkards Walk

P =


1 .5 0 0 0
0 0 .5 0 0
0 .5 0 .5 0
0 0 .5 0 0
0 0 0 .5 1


The first column contains the probabilities of transition to other states
from state 0 or home. This is an absorbing state.
The second column contains probabilities of moving to other corners from
corner 1. He has an equal likelyhood of going home or to corner 2.
Element j of column i contains the probability of moving from corner i to
corner j.
The last column represents the probability of staying at the bar. Another
absorbing state.
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Randomly Walking with Google

start at any webpage
randomly select a link and follow
repeat
what are the outcomes?

The outcomes of such a random walk are:
a dead end on a page with no outgoing links
a cycle where you end up where you began: known as a Markov chain or
Markov process.
The limiting probability that an infinitely dedicated random surfer visits
any particular page is its PageRank.
A page has high rank if other pages with high rank link to it.
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Back to Google

Let W be the set of Web pages that can reached by following a chain of
hyperlinks starting from a page at Google.
Let n be the number of pages in W.
The set W actually varies with time, by the end of 2005, n was over 10
billion.
Let G be the n× n connectivity matrix of W, that is, Gi,j is 1 if there is a
hyperlink from page i to page j and 0 otherwise.
Let H be G with each row i divided by the number of outgoing links from
node i.
The matrix H is huge, but very sparse; its number of nonzeros is the total
number of hyperlinks in the pages in W.
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Google and Probability

Let cj and ri be the column and row sums of G, respectively. That is,

cj =
∑

i

Gi,j, ri =
∑

j

Gi,j

Then ck and rk are the indegree and outdegree of the k-th page. In other
words, ck is the number of links into page k and rk is the number of links
from page k.
Let p be the fraction of time that the random walk follows a link.
Google typically takes this to be p = 0.85.
Then 1 − p is the fraction of time that an arbitrary page is chosen.
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Google meets Markov

Let A be an n× n matrix whose elements are Ai,j = pGi,j/cj + δ where
δ = (1 − p)/n.
This matrix is the transition matrix of the Markov chain of a random walk!
Notice that A comes from scaling the connectivity matrix by is column
sums.
The j-th column is the probability of jumping from the j-th page to the
other pages on the Web.
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The problem

Can write A, the transition matrix, as

A = pGD + ezT

where e is the vector of all ones and where ezT account for dead linked pages
and

Djj = 1/cj (or 0) zj = δ (or 1/n)

Then x = Ax can be written

(I − pGD)x = (zTx)e = γe

and we can scale x such that γ = 1
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Eigenvectors and Google

Find x = Ax and the elements of x are Google’s PageRank. Remember
n > 1010 (as of 2005) and growing (a Google blog post claimed n > 1012 in
2008) .

For any particular query, Google finds pages on the Web that match the
query. The pages are then listed in the order of their PageRank.
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Goal

Find x = Ax and the elements of x are Google’s PageRank.
For a matrix A, the scalar-vector pairs (λ, v) such that Av = λv are
eigenvalue-eigenvectors.
Topic #1: Power Method
Topic #2: Singular Value Decomposition (SVD)
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Power Method

Suppose that A is n× n and that the eigenvalues are ordered:

|λ1| > |λ2| > |λ3| > · · · > |λn|

Assuming A is nonsingular, we have a linearly independent set of vi such that
Avi = λivi.

Goal
Computing the value of the largest (in magnitude) eigenvalue, λ1.
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Power Method
Take a guess at the associated eigenvector, x0. We know

x(0) = c1v1 + · · ·+ cnvn

Since the guess was random, start with all cj = 1:

x(0) = v1 + · · ·+ vn

Then compute

x(1) = Ax(0)

x(2) = Ax(1)

x(3) = Ax(2)

...

x(k+1) = Ax(k)
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Power Method

Or x(k) = Akx(0). Or

x(k) = Akx(0)

= Akv1 + · · ·+ Akvn

= λk
1v1 + . . . λk

nvn

And this can be written as

x(k) = λk
1

(
v1 +

(
λ2

λ1

)k

v2 + · · ·+
(
λn

λ1

)k

vn

)

So as k→∞, we are left with

x(k) → λkv1
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The Power Method (with normalization)

1 for k = 1 to kmax
2 y = Ax
3 r = φ(y)/φ(x)
4 x = y/‖y‖∞

often φ(x) = x1 is sufficient
r is an estimate of the eigenvalue; x the eigenvector
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Inverse Power Method

We now want to find the smallest eigenvalue
Av = λv ⇒ A−1v = 1

λ
v

So “apply” power method to A−1 (assuming a distinct smallest
eigenvalue)
x(k+1) = A−1x(k)

Easier with A = LU
Update RHS and backsolve with U:

Ux(k+1) = L−1x(k)
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SVD: motivation

SVD uses in practice:
1 Search Technology: find closely related documents or images in a

database
2 Clustering: aggregate documents or images into similar groups
3 Compression: efficient image storage
4 Principal axis: find the main axis of a solid (engineering/graphics)
5 Summaries: Given a textual document, ascertain the most representative

tags
6 Graphs: partition graphs into subgraphs (graphics, analysis)
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SVD: Singular Value Decomposition

SVD takes an m× n matrix A and factors it:

A = USVT

where U (m×m) and V (n× n) are orthogonal and S (m× n) is diagonal.

Definition
A is orthogonal if ATA = AAT = I.

S is made up of “singular values”:

σ1 > σ2 > · · · > σr > σr+1 = · · · = σp = 0

Here, r = rank(A) and p = min(m, n).
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Diagonalizing a matrix
We want to factorize A into U, S, and VT. First step: find V. Consider

A = USVT

and multiply by AT

ATA = (USVT)T(USVT) = VSTUTUSVT

Since U is orthogonal
ATA = VS2VT

This is called a similarity transformation.

Definition
Matrices A and B are similar if there is an invertible matrix Q such that

Q−1AQ = B

Theorem
Similar matrices have the same eigenvalues.
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Proof

Bv = λv

Q−1AQv = λv
AQv = λQv

Aw = λw.

Further, if v is an eigenvector of B, Qv is an eigenvector of A.
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So far...

Need A = USVT

Look for V such that ATA = VS2VT. Here S2 is diagonal.

If ATA and S2 are similar, then they have the same eigenvalues. So the
diagonal matrix S2 is just the eigenvalues of ATA and V is the matrix of
eigenvectors. To see the latter, note that since S2 is diagonal, the eigenvectors

are ei, and VTei is just the ith column of VT.
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Similarly...

Now consider
A = USVT

and multiply by AT from the right

AAT = (USVT)(USVT)T = USVTVSTUT

Since V is orthogonal
AAT = US2UT

Now U is the matrix of eigenvectors of AAT.
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In the end...

We get

A =


...

...
...

u1 . . . um
...

...
...




σ1
. . .

σr
. . .

0


. . . vT

1 . . .

. . .
... . . .

. . . vT
n . . .
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Example

Decompose

A =

[
2 −2
1 1

]
First construct ATA:

ATA =

[
2 1
−2 1

] [
2 −2
1 1

]
=

[
5 −3
−3 5

]
Eigenvalues: λ1 = 8 and λ2 = 2. So

S2 =

[
8 0
0 2

]
⇒ S =

[
2
√

2 0
0

√
2

]
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Example

Now find VT and U. The columns of VT are the eigenvectors of ATA.
λ1 = 8: (ATA − λ1I)v1 = 0

⇒
[
−3 −3
−3 −3

]
v1 = 0 ⇒

[
1 1
0 0

]
v1 = 0 ⇒ v1 =

[
−1
1

]
=

[
−
√

2/2√
2/2

]
λ2 = 2: (ATA − λ2I)v2 = 0

⇒
[

3 −3
−3 3

]
v2 = 0 ⇒

[
1 −1
0 0

]
v2 = 0 ⇒ v2 =

[
1
1

]
=

[√
2/2√
2/2

]
Finally:

V =

[
−
√

2/2
√

2/2√
2/2

√
2/2

]
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Example

Now find U. The columns of U are the eigenvectors of AAT.
λ1 = 8: (AAT − λ1I)u1 = 0

⇒
[

0 0
0 −6

]
u1 = 0 ⇒

[
0 1
0 0

]
u1 = 0 ⇒ u1 =

[
−1
0

]
λ2 = 2: (AAT − λ2I)u2 = 0

⇒
[

6 0
0 0

]
u2 = 0 ⇒

[
1 0
0 0

]
u2 = 0 ⇒ u2 =

[
0
1

]
Finally:

U =

[
−1 0
0 1

]
Together:

A =

[
−1 0
0 1

] [
2
√

2 0
0

√
2

] [
−
√

2/2
√

2/2√
2/2

√
2/2

]
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SVD: who cares?
How can we actually use A = USVT? We can use this to represent A with far
fewer entries...

Notice what A = USVT looks like:

A = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σrurvT
r + 0ur+1vT

r+1 + · · ·+ 0upvT
p

This is easily truncated to

A = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σrurvT
r

see svd test.py
What are the savings?

A takes m× n storage
using k terms of U and V takes k(1 + m + n) storage
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