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Definitions

Significant digits are the numbe of digits beginning with the leftmost
nonzero digit and ending with the rightmost corret digit, including final
zeros that are exact.
Absolute Error

|exact value − approximate value|

Relative Error
|exact value − approximate value|

|exact value|

Accurate to n Decimal Places means you can trust n digits to the right
of the decimal
Accurate to n significant digits means you can trust a total of n digits
beginning with the leftmost nonzero digit.
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definitions

Roundoff occurs when digits in a decimal point (0.3333 . . .) are lost
(0.333) due to a limit on the memory available for storing one numerical
value
Truncation error occurs when discrete values are used to approximate a
mathematical expression.
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Taylor’s Theorem

If the function f posesses continuous derivatives of orders 0, 1, 2, · · · , (n + 1)
in a closed interval I = [a, b], then for any c and x in I,

f (x) =
n∑

k=0

f k(c)
k!

(x − c)k + En+1

Where the error term can be given in the form

En+1 =
f (n+1)(ε)

(n + 1)!
(x − c)n+1
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Alternating Series

If a1 > a2 > a3 > · · · > an > · · · > 0 for all n and limn→∞ an = 0, then the
alternating series:

a1 − a2 + a3 − a4 + · · ·

converges; that is,

∞∑
k=1

(−1)k−1ak = lim
n→∞

n∑
k=1

(−1)k−1ak = lim
n→∞ Sn = S

Where S is the sum and Sn is the nth partial sum. Moreover, for all n.

|S − Sn| 6 an+1
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Computer representation

A binary number x can be written:

x = ±0.b1b2b3 · · · × 2n

Or
x = ±q× 2m (

1
2
6 q < 1)

q - normalized mantissa in [ 1
2 , 1)

m - exponent
b1 , 0
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Computer representation

Finite Word Length (number of bits per word)
I Finite number of digits per number
I Irrational numbers can not be represented
I Numbers may be too big or too small

1 word per number in single precision
2 or more words per number in extended precision
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Computer Representation

Machine numbers are a discrete set.
Consider x = ∓(0.b1b2b3)× 2±m

x = ±q× 2m; −1 6 m 6 1
m outside permissible range - overflow or underflow
Numbers < 1

16 underflow to zero.

Numbers > 7
4 overflow to machine infinity.

Allowing only normalized numbers (b1 = 1) creates a hole at zero.
1/8, 1/16, and 3/16 are lost.
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Single Precision

Standard
single precision floating point

(−1)s × 2c−127 × (1.f )2

Bit 31 contains s, sign of mantissa.
Bits 23-30 contain c in 2c−127

Bits 0-22 contains f from (1.f )2
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Number Line
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Rounding

Machine epsilon ε, is the smallest machine number for which 1 + ε , 1.
In single precision, ε = 2−23.
the relative error in representing a normalized floating point number by a
machine number using round to nearest is bounded by the unit roundoff
error u.
In single precision u = 2−24
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Solving a system

Ax = b

Three situations:
1 A is nonsingular: There exists a unique solution x = A−1b
2 A is singular and b ∈ Range(A): There are infinite solutions.
3 A is singular and b < Range(A): There no solutions.

1 A =

[
2 0
0 4

]
b =

[
1
8

]
, then x =

[
1/2

2

]
.

2 A =

[
2 0
0 0

]
b =

[
1
0

]
, then infinitely many solutions. x =

[
1/2
α

]
.

3 A =

[
2 0
0 0

]
b =

[
1
1

]
, then no solutions.
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Gaussian Elimination

Gaussian elimination is a mostly general method for solving square systems.

We will work with systems in their matrix form, such as

x1 + 3x2 + 5x3 = 4
9x1 + 7x2 + 8x3 = 6
3x1 + 2x2 + 7x3 = 1,

in its equivalent matrix form,1 3 5
9 7 8
3 2 7

x1
x2
x3

 =

4
6
1

 .
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Triangular Systems

The generic lower and upper triangular matrices are

L =


l11 0 · · · 0
l21 l22 0
...

. . .
...

ln1 · · · lnn


and

U =


u11 u12 · · · u1n
0 u22 u2n
...

. . .
...

0 · · · unn


The triangular systems

Ly = b Ux = c

are easily solved by forward substitution and backward substitution,
respectively
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Pivoting Strategies

Partial Pivoting: Exchange only rows
Exchanging rows does not affect the order of the xi

For increased numerical stability, make sure the largest possible pivot
element is used. This requires searching in the partial column below the
pivot element.
Partial pivoting is usually sufficient.
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More Pivoting Strategies

Full (or Complete) Pivoting: Exchange both rows and columns
Column exchange requires changing the order of the xi

For increased numerical stability, make sure the largest possible pivot
element is used. This requires searching in the pivot row, and in all rows
below the pivot row, starting the pivot column.
Full pivoting is less susceptible to roundoff, but the increase in stability
comes at a cost of more complex programming (not a problem if you use
a library routine) and an increase in work associated with searching and
data movement.
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Scaled Partial Pivoting

We simulate full pivoting by using a scale with partial pivoting.
pick pivot element as the largest relative entry in the column (relative to
the other entries in the row)
do not swap, just keep track of the order of the pivot rows
call this vector ` = [`1, . . . , `n].
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SPP Process
1 Determine a scale vector s. For each row

si = max
16j6n

|aij|

2 initialize ` = [`1, . . . , `n] = [1, . . . , n].
3 select row j to be the row with the largest ratio

|a`i1|

s`i

1 6 i 6 n

4 swap `j with `1 in `
5 Now we need n − 1 multipliers for the first column:

m1 =
a`i1

a`11

6 So the index to the rows are being swapped, NOT the actual row vectors
which would be expensive

7 finally use the multiplier m1 times row `1 to subtract from rows `i for
2 6 i 6 n
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SPP Process continued

1 For the second column in forward elimination, we select row j that yields
the largest ratio of

|a`i,2|

s`i

2 6 i 6 n

2 swap `j with `2 in `
3 Now we need n − 2 multipliers for the second column:

m2 =
a`i,2

a`22

4 finally use the multiplier m2 times row `2 to subtract from rows `i for
3 6 i 6 n

5 the process continues for row k
6 note: scale factors are not updated
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Geometric Interpretation of Singularity

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is nonsingular

0 1 2 3 4

0

2

4

6

8
A and b are inconsistent

A is singular

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is singular

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is ill conditioned
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Norms
Vectors:

‖x‖p =
(
|x1|

p + |x2|
p + . . . + |xn|

p)1/p

‖x‖1 = |x1|+ |x2|+ . . . + |xn| =

n∑
i=1

|xi|

‖x‖∞ = max (|x1|, |x2|, . . . , |xn|) = max
i

(|xi|)

Matrices:

‖A‖ = max
x,0

‖Ax‖
‖x‖

‖A‖p = max
x,0

‖Ax‖p

‖x‖p

‖A‖1 = max
16j6n

m∑
i=1

|aij|

‖A‖∞ = max
16i6m

n∑
j=1

|aij|
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Effect of Perturbations to b

Perturb b with δb such that
‖δb‖
‖b‖

� 1,

The perturbed system is
A(x + δxb) = b + δb

The perturbations satisfy
Aδxb = δb

Analysis shows (see next two slides for proof) that

‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxb‖
‖x‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Effect of Perturbations to A

Perturb A with δA such that
‖δA‖
‖A‖

� 1,

The perturbed system is

(A + δA)(x + δxA) = b

Analysis shows that
‖δxA‖
‖x + δxA‖

6 ‖A‖‖A−1‖‖δA‖
‖A‖

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxA‖
‖x + δxA‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Condition number of A

The condition number
κ(A) ≡ ‖A‖‖A−1‖

indicates the sensitivity of the solution to perturbations in A and b. The
condition number can be measured with any p-norm.
The condition number is always in the range

1 6 κ(A) 6 ∞
κ(A) is a mathematical property of A
Any algorithm will produce a solution that is sensitive to
perturbations in A and b if κ(A) is large.
In exact math a matrix is either singular or non-singular.
κ(A) = ∞ for a singular matrix
κ(A) indicates how close A is to being numerically singular.
A matrix with large κ is said to be ill-conditioned
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The Residual

Let x̂ be the numerical solution to Ax = b. x̂ , x (x is the exact solution)
because of roundoff.
The residual measures how close x̂ is to satisfying the original equation

r = b − Ax̂

It is not hard to show that

‖x̂ − x‖
‖x̂‖

6 κ(A)
‖r‖
‖b‖

Small ‖r‖ does not guarantee a small ‖x̂ − x‖.
If κ(A) is large the x̂ returned by Gaussian elimination and back substitution
(or any other solution method) is not guaranteed to be anywhere near the true
solution to Ax = b.
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Rules of Thumb

Applying Gaussian elimination with partial pivoting and back substitution
to Ax = b yields a numerical solution x̂ such that the residual vector
r = b − Ax̂ is small even if the κ(A) is large.
If A and b are stored to machine precision εm, the numerical solution to
Ax = b by any variant of Gaussian elimination is correct to d digits where

d = | log10(εm)|− log10 (κ(A))
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Rules of Thumb

d = | log10(εm)|− log10 (κ(A))

Example:
NUMPY computations have εm ≈ 2.2× 10−16. For a system with κ(A) ∼ 1010

the elements of the solution vector will have

d = | log10(2.2× 10−16)|− log10

(
1010)

= 16 − 10
= 6

correct (decimal) digits
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Summary of Limits to Numerical Solution of Ax = b

1 κ(A) indicates how close A is to being numerically singular
2 If κ(A) is “large”, A is ill-conditioned and even the best numerical

algorithms will produce a solution, x̂ that cannot be guaranteed to be
close to the true solution, x

3 In practice, Gaussian elimination with partial pivoting and back
substitution produces a solution with a small residual

r = b − Ax̂

even if κ(A) is large.
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Tridiagonal

A tridiagonal matrix A

d1 c1
a1 d2 c2

a2 d3 c3
. . . . . . . . .

ai−1 di ci
. . . . . . . . .
. . . . . . . . .

an−1 dn


storage is saved by not saving zeros
only n + 2(n − 1) = 3n − 2 places are needed to store the matrix versus n2

for the whole system
can operations be saved? yes!
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LLT: Cholesky Factorization

A must be symmetric and positive definite (SPD)
A is Positive Definite (PD) if for all x , 0 the following holds

xTAx > 0

Positive definite gives us an all positive D in A = LDLT

I Let x = L−1ei, where ei is the i-th column of I

L becomes LD1/2

A = LLT, i.e. L = UT

I Half as many flops as LU!
I Only calculate L not U
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Why SPD?

A matrix is Positive Definite (PD) if for all x , 0 the following holds

xTAx > 0

For SPD matrices, use the Cholesky factorization, A = LLT

Cholesky Factorization
I Requires no pivoting
I Requires one half as many flops as LU factorization, that is only calculate L

not L and U.
I Cholesky will be more than twice as fast as LU because no pivoting means

no data movement

Use SCIPY’s built-in scipy.linalg.cholesky() function for routine work
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CSR

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [ 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 ]
JA = [ 1 4 1 2 4 1 3 4 5 3 4 5 ]
IA = [ 1 3 6 10 12 13 ]

Length of AA and JA is nnz; length of IA is n + 1
IA(j) gives the index (offset) to the beginning of row j in AA and JA (one
origin due to Fortran)
no structure, fast row access, slow column access
related: CSC, MSR
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Rootfinding

Goals:
Find roots to equations
Compare usability of different methods
Compare convergence properties of different methods

1 bracketing methods
2 Bisection Method
3 Newton’s Method
4 Secant Method
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Bisection

For the bracket interval [a, b] the
midpoint is

xm =
1
2
(a + b)

idea:
1 split bracket in half
2 select the bracket that has the

root
3 goto step 1
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Analysis of Bisection
Let δn be the size of the bracketing interval at the nth stage of bisection. Then

δ0 = b − a = initial bracketing interval

δ1 =
1
2
δ0

δ2 =
1
2
δ1 =

1
4
δ0

...

δn =

(
1
2

)n

δ0

=⇒ δn

δ0
=

(
1
2

)n

= 2−n

or n = log2

(
δn

δ0

)
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Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the
root and stop when current guess is close enough to the desired root.

Convergence checking will avoid searching to unnecessary accuracy.
Check how closeness of successive approximations

|xk − xk−1| < δx

Check how close f (x) is to zero at the current guess.

|f (xk)| < δf

Which one you use depends on the problem being solved
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Convergence rate of a root finding iteration

Let en = x∗ − xn be the error.
In general, a sequence is said to converge with rate r if

lim
k→∞

|en+1|

|en|r
= C

Special Cases:
If r = 1 and C < 1, then the rate is linear
If r = 2 and C > 0, then the rate is quadratic
If r = 3 and C > 0, then the rate is cubic
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Example

Convergence Rate
1 10−2, 10−3, 10−4, 10−5...

(linear with C = 10−1)

2 10−2, 10−4, 10−6, 10−8...

(linear with C = 10−2)

3 10−2, 10−4, 10−8, 10−16...

(quadratic)

4 10−2, 10−6, 10−18, ...

(cubic)

Linear: Adds one digit of accuracy at each step
Quadratic: Doubles the number of digits at each step

David Semeraro (NCSA) CS 357 May 1, 2014 39 / 59



Example

Convergence Rate
1 10−2, 10−3, 10−4, 10−5... (linear with C = 10−1)
2 10−2, 10−4, 10−6, 10−8... (linear with C = 10−2)
3 10−2, 10−4, 10−8, 10−16...(quadratic)
4 10−2, 10−6, 10−18, ... (cubic)

Linear: Adds one digit of accuracy at each step
Quadratic: Doubles the number of digits at each step

David Semeraro (NCSA) CS 357 May 1, 2014 39 / 59



Newton’s Method

x1
x2

f(x1)

f(x2)

x3

For a current guess xk, use f (xk) and the slope f ′(xk) to predict where f (x)
crosses the x axis.
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Newton’s Method

Goal is to find x such that f (x) = 0.
Set f (xk+1) = 0 and solve for xk+1

0 = f (xk) + (xk+1 − xk) f ′(xk)

or, solving for xk+1

xk+1 = xk −
f (xk)

f ′(xk)

David Semeraro (NCSA) CS 357 May 1, 2014 41 / 59



Newton’s Method: Convergence

Recall
Convergence of a method is said to be of order r if there is a constant C > 0
such that

lim
k→∞

|ek+1|

|ek|r
= C

Newton’s method is of order 2 (quadratic) when f ′(x∗) , 0. For ξ between xk

and x∗
f (x∗) = f (xk) + (x∗ − xk)f ′(xk) +

1
2
(x∗ − xk)

2f ′′(ξ) = 0

So
f (xk)

f ′(xk)
+ x∗ − xk +

(x∗ − xk)
2

2
f ′′(ξ)
f ′(xk)

= 0

Then
x∗ − xk+1 +

1
2
(x∗ − xk)

2 f ′′(ξ)
f ′(xk)

= 0

Thus
|x∗ − xk+1|

|x∗ − xk|
2 =

1
2

f ′′(ξ)
f ′(xk)
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Secant Method

x1x2

f(x1)

a

f(b)

f(a)

b

Given two guesses xk−1 and xk, the next guess at the root is where the line
through f (xk−1) and f (xk) crosses the x axis.
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Secant Method

Two versions of this formula are (equivalent in exact math)

xk+1 = xk − f (xk)

[
xk − xk−1

f (xk) − f (xk−1)

]
(?)

and
xk+1 =

f (xk)xk−1 − f (xk−1)xk

f (xk) − f (xk−1)
(??)

Equation (?) is better since it is of the form xk+1 = xk + ∆. Even if ∆ is
inaccurate the change in the estimate of the root will be small at convergence
because f (xk) will also be small.
Equation (??) is susceptible to catastrophic cancellation:

f (xk)→ f (xk−1) as convergence approaches, so cancellation error in
denominator can be large.
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Summary

Plot f (x) before searching for roots

Bracketing finds coarse interval containing roots and singularities

Bisection is robust, but converges slowly

Newton’s Method
I Requires f (x) and f ′(x).
I Iterates are not confined to initial bracket.
I Converges rapidly (r = 2).
I Diverges if f ′(x) ≈ 0 is encountered.

Secant Method
I Uses f (x) values to approximate f ′(x).
I Iterates are not confined to initial bracket.
I Converges almost as rapidly as Newton’s method (r ≈ 1.62).
I Diverges if f ′(x) ≈ 0 is encountered.
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Interpolation: Introduction

Given n + 1 distinct points x0, . . . , xn, and values y0, . . . , yn, find a polynomial
p(x) of degree n so that

p(xi) = yi i = 0, . . . , n

A polynomial of degree n has n + 1 degrees-of-freedom:

p(x) = a0 + a1x + · · ·+ anxn

n + 1 constraints determine the polynomial uniquely:

p(xi) = yi, i = 0, . . . , n

Theorem (page 128 6thEd)
If points x0, . . . , xn are distinct, then for arbitrary y0, . . . , yn, there is a unique
polynomial p(x) of degree at most n such that p(xi) = yi for i = 0, . . . , n.
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Monomials
Obvious attempt: try picking

p(x) = a0 + a1x + a2x2 + · · ·+ anxn

So for each xi we have

p(xi) = a0 + a1xi + a2x2
i + · · ·+ anxn

i = yi

OR

a0 + a1x0 + a2x2
0 + · · ·+ anxn

0 = y0

a0 + a1x1 + a2x2
1 + · · ·+ anxn

1 = y1

a0 + a1x2 + a2x2
2 + · · ·+ anxn

2 = y2

a0 + a1x3 + a2x2
3 + · · ·+ anxn

3 = y3

...

a0 + a1xn + a2x2
n + · · ·+ anxn

n = yn
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Monomial: The problem


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
1 x2 x2

2 . . . xn
2

...
1 xn x2

n . . . xn
n




a0
a1
a2
...

an

 =


y0
y1
y2
...

yn



Question
Is this a “good” system to solve?
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Lagrange

The general Lagrange form is

`k(x) =
n∏

i=0,i,k

x − xi

xk − xi

The resulting interpolating polynomial is

p(x) =
n∑

k=0

`k(x)yk

David Semeraro (NCSA) CS 357 May 1, 2014 49 / 59



Example
Find the equation of the parabola passing through the points (1,6), (-1,0), and
(2,12)

x0 = 1, x1 = −1, x2 = 2; y0 = 6, y1 = 0, y2 = 12;

`0(x) = (x−x1)(x−x2)
(x0−x1)(x0−x2)

= (x+1)(x−2)
(2)(−1)

`1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2)

= (x−1)(x−2)
(−2)(−3)

`2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1)

= (x−1)(x+1)
(1)(3)

p2(x) = y0`0(x) + y1`1(x) + y2`2(x)

= −3× (x + 1)(x − 2) + 0× 1
6
(x − 1)(x − 2)

+4× (x − 1)(x + 1)
= (x + 1)[4(x − 1) − 3(x − 2)]
= (x + 1)(x + 2)
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Newton Polynomials

Newton Polynomials are of the form

pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + a3(x− x0)(x− x1)(x− x2) + . . .

The basis used is thus
function order
1 0
x − x0 1
(x − x0)(x − x1) 2
(x − x0)(x − x1)(x − x2) 3

More stable that monomials
More computationally efficient (nested iteration) than using Lagrange and
shifted monomials
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Newton Polynomials using Divided Differences

Consider the data

x0 x1 x2

y0 y1 y2

We want to find a0, a1, and a2 in the following polynomial so that it fits the data:

p2(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1)

Matching the data gives three equations to determine our three unknowns ai:

at x0: y0 = a0 + 0 + 0
at x1: y1 = a0 + a1(x1 − x0) + 0
at x2: y2 = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)
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Divided Differences
the easy way: example

x f [·] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·]
1 3

1
2

3
2

13
4

1
3

1
6 -2

0 3 - 5
3

- 2
3

2 5
3

The coefficients are readily available and we arrive at

p2(x) = 3 +
1
2
(x − 1) +

1
3
(x − 1)(x −

3
2
) − 2(x − 1)(x −

3
2
)x
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Piecewise Polynomial
A function f (x) is considered a piecewise polynomial on [a, b] if there exists a
(finite) partition P of [a, b] such that f (x) is a polynomial on each [ti, ti+1] ∈ P.

Example

f (x) =


x3 x ∈ [0, 1]
x x ∈ (1, 2)
3 x ∈ [2, 3]
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degree 1 spline

definition
A function S(x) is a spline of degree 1 if:

1 The domain of S(x) is an interval [a, b]
2 S(x) is continuous on [a, b]
3 There is a partition a = t0 < t1 < · · · < tn = b such that S(x) is linear on

each subinterval [ti, ti+1].

Example

S(x) =


x x ∈ [−1, 0]
1 x ∈ (0, 1)
2x − 2 x ∈ [1, 2]
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degree 2 splines

definition
A function S(x) is a spline of degree 2 if:

1 The domain of S(x) is an interval [a, b]
2 S(x) is continuous on [a, b]
3 S ′(x) is continuous on [a, b]
4 There is a partition a = t0 < t1 < · · · < tn = b such that S(x) is quadratic

on each subinterval [ti, ti+1].
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degree 3 spline: cubic spline

definition
A function S(x) is a spline of degree 3 if:

1 The domain of S(x) is an interval [a, b]
2 S(x) is continuous on [a, b]
3 S ′(x) is continuous on [a, b]
4 S ′′(x) is continuous on [a, b]
5 There is a partition a = t0 < t1 < · · · < tn = b such that S(x) is cubic on

each subinterval [ti, ti+1].

David Semeraro (NCSA) CS 357 May 1, 2014 57 / 59



degree 3 spline: cubic spline

In each intervale [ti, ti+1], S(x) looks like

Si(x) = a0,i + a1,ix + a2,ix2 + a3,ix3

n intervals, n + 1 knots, 4 unknowns per interval
4n unknowns

2n constraints by continuity
n − 1 constraints by continuity of S ′(x)
n − 1 constraints by continuity of S ′′(x)
4n − 2 total constraints
This leaves 2 extra degrees of freedom. The cubic spline is not yet
unique!
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degree 3 spline: cubic spline

Some options:
natural cubic spline: S ′′(t0) = S ′′(tn) = 0
fixed-slope: S ′(t0) = a, S ′(tn) = b
not-a-knot: S ′′′(x) continuous at t1 and tn−1

periodic: S ′ and S ′′ are periodic at the ends
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