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Notes on wave phase and polarization

1 Plane waves

A general plane wave in 1-D propagating in the positive z− direction can be represented by ψ(z, t) =
ψ0 cos(kz−ωt+φ0). Here ψ represents the amplitude (e.g., it can be density perturbation for a sound
wave, electric field in x− direction for a linearly polarized e.m. wave) and the phase φ = kz−ωt+φ0.
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Figure 1: Wave amplitude (normalized to ψ0) as
a function of kz − ωt for different phase-lags φ0;
its a periodic function with period 2π. The wave
with φ0 = π/4 lags behind the wave with φ0 = 0.
The same is true if we treat ψ as a function of z
at a fixed time. However, the wave with φ0 = π/4
will be ahead of the φ0 = 0 wave when looked as a
function of time.

Figure 1 shows the wave amplitude as a func-
tion of (kz − ωt) for different phase-lags φ0.
We can look at the wave amplitude as a func-
tion of time at a fixed z (ψ[t] = ψ0 cos(kz0 −
ωt+φ0) = ψ0 cos(ωt−[kz0+φ0])) or as a func-
tion of z at a fixed time (ψ[z] = ψ0 cos(kz −
ωt0 + φ0) = ψ0 cos(kz + [φ0 − ωt0])). Thus,
the wave in Figure 1 can be thought of as a
function of kz with effective φ0 = φ0 − ωt0.
Figure 1 can also be thought of as a function
of ωt with effective φ0 = −φ0 − kz0. If t0
and z0 are chosen to be zero (we are free to
choose the origin of our coordinates), ψ(t) =
ψ0 cos(ωt − φ0) and ψ(z) = φ0 cos(kz + φ0).
Thus, if the wave is ahead of a reference wave
in space, it will lag behind it in time. This
is because the disturbance (ψ) at z − v∆t
(v = ω/k is the phase velocity) arrives at z
after time ∆t.

We can think of cosφ as the real part of
a complex phasor eiφ. Over a phase of 2π the phasor goes around a circle in the complex plane and
its projection on real axis, cosφ, completes a full period. Its easier to work with phasors because
phases are simply added; with sin / cos we have to use trigonometric formulae. Moreover, integra-
tion/differentiation of an exponential function is trivial. So phasors are used everywhere in linear
systems which support waves and oscillations. After applying all linear operations to phasors, the fi-
nal solution is just the real part of the complex solution. We cannot directly use phasors for nonlinear
operations; e.g., energy density (∝ E2) in an e.m. wave.

Now let us consider interference between two waves traveling in the same direction (say z): ψ1 =
ψ01 cos(kz−ωt) and ψ2 = ψ02 cos(kz−ωt+∆φ), where ∆φ is the phase difference between ψ2 and ψ1.
This phase difference can correspond to the optical path difference at a distance x from the central
fringe in Young’s double hole experiment. There, we know that ∆φ = 2πd sin θ/λ (d is spacing between
holes and θ is the usual angle). It can also be due to a refractive thin film introduced in the path of the
second wave; ∆φ = 2πt(n− 1)/λ (n is refractive index of the film and t is its thickness). For a small
positive ∆φ, at z0 a given wavefront from source 2 arrives a bit later compared to the corresponding
wavefront of source 1 (verify this by drawing waves 1 & 2 as a function of time). In interference fringes
we are looking at 〈|ψ1 + ψ2|2〉 (where 〈〉 represents time average) at various locations in space. E.g.,
in Young’s double hole experiment different locations on the screen (z = D) correspond to various
constant phase differences of interfering waves.
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2 Polarization

Unlike sound waves (but like waves on a stretched string), the ~E vector of e.m. waves lies in the
plane perpendicular to ~k. Velocity/density/pressure perturbation in a sound wave is either positive or
negative, and does not have a direction/polarization. However, there are two independent components
of a plane e.m. wave traveling along z−; ~E = E0x cos(kz−ωt+φ0x)x̂+E0y cos(kz−ωt+φ0y)ŷ (both
Ex and Ey are solutions of the wave equation and a linear combination should also be a solution,
by superposition principle; of course k = ωn/c). As outlined in class, a general polarization vector
(Exx̂+Eyŷ) traces out an ellipse in the x− y plane. The representation of Ex−Ey in the x− y plane
is a more compact way of visualizing the wave polarization rather than plotting Ex, Ey as a function
of time. The polarization plot is analogous to the phase diagram in mechanics, where position and
momentum are plotted against each other, instead of looking at position and momentum as functions
of time.

A left circularly polarized wave corresponds to Ex = Ey = E0 and φ0y − φ0x = π/2. Only relative

phases matter because absolute phases just correspond to different starting locations for ~E in the x−y
plane. So, ~E = E0e

iφ(x̂+ ŷeiπ/2), in phasor notation (φ = kz−ωt+φ0x). We can choose kz+φ0x = 0
and ~E = E0[x̂ cosωt+ ŷ cos(ωt−π/2)]. Thus Ex/E0 = cosωt and Ey/E0 = sinωt; or, Ex and Ey trace
out a circle in the x− y plane. The polarization vector rotates counter-clockwise when looking along
−ẑ (see top panel of Fig. 2). We call this Left Circularly Polarized (LCP), consistent with Hecht’s
convention. The convention used in Hecht (this convention is what I was using in class) is opposite of
the convention used in Ghatak/Feynman! Just to be safe in exams you can indicate the x, y, z axes
when you show polarization vectors.
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Figure 2: Top Left Panel: Amplitude as a function
of time for Ex (solid black line) and Ey(blue dashed
line) for LCP/LEP wave (LCP when E0x = E0y,
LEP otherwise). Top Right Panel: The polariza-
tion plot in x−y plane for LCP/LEP wave. Bottom
Left Panel: Amplitude as a function of time for Ex
(solid black line) and Ey(blue dashed line) for REP
wave with φ0y−φ0x = −π/4 and E0y = 2E0x. Bot-
tom Right Panel: The tip of the polarization vector
traces out a clockwise ellipse. The labels a, b, c, d
mark the corresponding locations in the temporal
and polarization plots.

The bottom panels in Figure 2 show the
temporal and polarization plots for a right
elliptically polarized (REP) e. m. wave.
The wave is given by ~E = E0[0.5x̂ cosωt +
ŷ cos(ωt + π/4)] = E0e

iφ(0.5x̂ + ŷe−iπ/4),
where φ = kz−ωt+φ0x. The simplest way to
trace the polarization ellipse (and its sense of
rotation) in the x− y plane is to look at the
time variation of the x− and y− components
of the e.m. wave and then locate the points
corresponding to special points (such as cor-
responding to Ex = 0, Ey = 0, Ex = E0x,
Ey = E0y) in the phase plane. Figure 2 shows
two examples where special times in the tem-
poral plot (a, b, c, d) are marked in the phase
plot. All other polarization plots can be fig-
ured out in a similar way.

The orientation of the principal axes of the
polarization ellipse, and its other properties,
were indicated in class and is derived in both
Hecht and Ghatak.
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