10.

11.

12.

13.

Programming Assignment #5 (SML)

CS-671

due 8 April 2014 11:59pm

. Write a function last that returns the last element of a list. The function raises an exception (of any type)

when applied to the empty list.

Write a function natList such that natList(n) returns the list [1,2,3,...,n]. natList(0) is [] and
natList (1) is [1]. Negative numbers are invalid inputs.

Write a function sum that computes the sum of a list of integers. The empty list is a valid input.

. Write a function prod that computes the product of a list of integers. The empty list is a valid input.

Write a function sum2 that computes the sum of a list of lists of integers. The empty list is a valid input.
Write a function isLetter that returns true if a character is a letter, false otherwise.

Write a function toLower that returns a lowercase character from an uppercase character. Parameters other
than #"A" #"B" ... #"Z" are left unchanged.

Write a function palindrome that returns true if a string is a palindrome. A string is a palindrome if its letters
read the same from left to right and from right to left. For instance, the following strings are palindromes
and should make the function return true:

e "A man, a plan, a canal, Panama!"

e "Won’t cat lovers revolt? Act now!"

Write a function hanoi that builds a list of moves to solve the Towers of Hanoi problem. Each move is
represented as a pair (source, destination). A call to hanoi(n,A,B,C) should solve the problem of moving
n discs from peg A to peg C using peg B as an intermediate. The solution must have minimal length (i.e.,
smallest number of moves), which is 2" — 1.

Write a function factor that factorizes an integer (> 2) into its constituent primes. Each factor is represented
as a pair (value, exponent) and the function returns a list of such pairs. No factor should appear more than
once in the list and the list is sorted in order of increasing factor values. For instance, factor(1111104)
should return [(2,6),(3,3),(643,1)] (1111104 = 25 x 33 x 643).

Write a function multiply that is the inverse of factor: it reconstructs a number from its list of prime
factors. For any integer n > 2, n=multiply(factor(n)) should always be true. This problem must be solved
using tail recursion only: multiply and any intermediate function used to solve the problem must be tail
recursive (or not recursive at all).

Write a function printFact(n) that prints the prime factors decomposition of n in a human-readable form.
For instance, printFact (1776) prints 1776 = 274 * 3 * 37, followed by a newline. When the number is
prime, the function prints a message instead. For instance, printFact (1789) prints 1789 is prime, followed
by a newline.

Write a function isPerm that checks that two lists are permutations of each other. Be careful with duplicates:

isPerm ([1,2,3,2], [2,2,3,1])
isPerm ([1,2,3,2], [2,1,3,1])

true
false

1/2

5 pts

5 pts

5 pts
5 pts
10 pts
5 pts

5 pts

10 pts

10 pts

10 pts

10 pts

10 pts

10 pts



Notes:

This assignment must be submitted in a file named 5.sml inside a sml subdirectory of the repository. This
file can load other files using function use on relative paths, if necessary.

Except for question 11, recursive functions don’t have to be tail recursive. Functions can rely on the correctness
of their input and don’t have to deal with exceptional cases due to erroneous input, overflow, etc.

The warning calling polyEqual can be ignored (it tells you that you are using a costly comparison operator,
which is fine). Do not ignore other warnings.

e Functions don’t have to use pattern matching. In particular, functions that work on lists can be written using
hd, t1, null, etc. However, you are free to use pattern matching if you want to.

Functions can use previously defined functions, as well as other intermediate functions that are not part of
the assignment. It is not required to hide intermediate functions in let and local blocks.

e Functions Char.toLower, Char.isAlpha, Int.min, List.length, List.last, List.nth, List.take, List.drop,
List.foldl, List.foldr, ...from the standard library cannot be used. Functions have to be programmed
explicitly (for this assignment). Functions Char.ord and Char.chr can be used.

Code of the form: "if ... then true else false" or "if ... then false else true" should never be
used.

Below is a simple algorithm to calculate the prime factors of n, expressed in Java. You are not required to
use this particular algorithm.
1 int i = 2;
double s = Math.sqrt(n);
3 while (i <=s) {
| if m%i==0 {
5 System.out.printf("d 7, 1i);
6 n /= i;
7 s = Math.sqrt(n);
s } else {
9 i+=1;
10 }
11 }
12 System.out.println(n) ;
13 }

N

e Functions must have the following types:

val last = fn : ’a list -> ’a

val natList = fn : int -> int list

val sum = fn : int list -> int

val prod = fn : int list -> int

val sum2 = fn : int list list -> int

val isLetter = fn : char -> bool

val toLower = fn : char -> char

val palindrome = fn : string -> bool

val hanoi = fn : int * ’a * ’a * ’a -> (’a * ’a) list
val factor = fn : int -> (int * int) list

val multiply = fn : (int * int) list -> int
val printFact = fn : int -> unit

val isPerm = fn : ’’a list * ’’a list -> bool

Be careful that the type parameter in last and hanoi is ’a, not ’’a.
If a function is not implemented, it should be replaced with a dummy function of type >a -> ’b so compilation
can proceed:

(* Function printFact is not implemented *)
fun printFact _ = raise Fail "not implemented"

2/2



