
Programming Assignment #8 (SML)

CS–671

due 7 May 2014 11:59 PM

This assignment illustrates the idea of lazy evaluation. Some programming languages (most notably
Haskell) rely heavily on lazy evaluation. SML does not, but lazy evaluation can be simulated to build a
datatype of sequences, which are conceptually infinite lists. The signature of the structure is listed in Lis. 1.

The idea of lazy evaluation is to delay the evaluation of an expression until its value is absolutely needed.
Some languages, like Haskell or Scala, support it natively. By contrast, most languages—including SML—
only use eager evaluation. For instance, to evaluate F (e), SML or Java first evaluate e, then call F . In lazy
evaluated languages, the call to F starts without evaluating e; within F , e (or parts of e) will be evaluated
as needed.

Lazy evaluation makes it possible to implement data structures that are conceptually infinite in size.
They are, or course, never fully evaluated. Sequences are an example of such a structure. They represent
lists that contain an infinite number of elements.

Even though SML uses eager evaluation, sequences can be implemented as a datatype. The trick is to
embed in the datatype a function that represents the part of the structure yet to be evaluated.

The implementation used in this assignment relies on the following strategy. The tail of a sequence is
implemented as a function toward the actual tail (lazy evaluation). This function is stored in the datatype
and run only when the actual value of the tail is needed. In order to be able to filter out all elements from a
sequence, the head is implemented as an option: SOME(x) means that the actual head is x; NONE means that
the actual head is further down in the sequence. This results in a datatype of the form:

datatype ’a seq = Cons of ’a option * (unit -> ’a seq)

(The name of the constructor (Cons) is unimportant; it is not exported in the signature.)
A hd function can be written this way:

fun hd (Cons(NONE, f)) = hd (f()) (* nothing found, keep digging *)

| hd (Cons(SOME x, _)) = x (* found actual head x *)

Note how these sequences are conceptually infinite: They always have a tail (no nil like with lists). What
makes this possible is the fact that the tail is evaluated only when needed, as in the first branch of the hd

function above.

1. Write a structure Seq that implements the signature SEQ given in file sequence-sig.sml. This struc- 100 pts
ture implements polymorphic streams (infinite sequences).

The structure to implement contains the following elements. In this description, [x1, x2, · · · , xn] repre-
sents a list and 〈x1, x2, · · ·〉 represents a sequence.

• type ’a seq:
It can be implemented as the datatype above.

• val cons: ’a * (unit -> ’a seq) -> ’a seq:
Builds a sequence by adding an element in front of an existing sequence. This is similar to ::

on lists, except that the sequence is given in a lazy way, as a function. Specifically, if f() is
〈y1, y2, · · ·〉, then cons(x, f) is 〈x, y1, y2, · · ·〉. Note that cons(x, f) is built by passing f to the
datatype constructor, without evaluating f().

The cons function is used outside the structure. It is necessary because the constructors of the
datatype are not exported. There is no reason to use it within the structure, where the datatype
can be used directly instead. For instance, a sequence 〈"yes", "no", "yes", "no", · · ·〉 can be
constructed outside the structure as follows:

1 / 4



local

open Seq

fun addyes () = cons ("yes", addno)

and addno () = cons ("no", addyes)

in

val yesno = addyes()

end

Within the structure, it can be written instead as:

local

fun addyes () = Cons (SOME "yes", addno)

and addno () = Cons (SOME "no", addyes)

in

val yesno = addyes()

end

• hd: ’a seq -> ’a:
It can be implemented as above: hd(〈x1, x2, · · ·〉) is x1.

• tl: ’a seq -> ’a seq:
Returns a sequence with the first element removed: tl(〈x1, x2, · · ·〉) is 〈x2, · · ·〉.

• take: ’a seq * int -> ’a list:
This is a generalization of List.take: take(〈x1, x2, · · ·〉, k) is [x1, x2, · · · , xk].

1 signature SEQ = sig

2

3 type 'a seq

4

5 val cons: 'a * (unit -> 'a seq) -> 'a seq

6

7 val hd : 'a seq -> 'a
8 val tl : 'a seq -> 'a seq

9 val take : 'a seq * int -> 'a list

10 val drop : 'a seq * int -> 'a seq

11 val append : 'a list * 'a seq -> 'a seq

12

13 val map : ('a -> 'b) -> 'a seq -> 'b seq

14 val filter : ('a -> bool) -> 'a seq -> 'a seq

15 val find : int -> ('a -> bool) -> 'a seq -> 'a option

16

17 val tabulate : (int -> 'a) -> 'a seq

18 val iter : ('a -> 'a) -> 'a -> 'a seq

19 val iterList : ('a list -> 'a) -> 'a list -> 'a seq

20 val repeat : 'a list -> 'a seq

21

22 val merge : 'a seq * 'a seq -> 'a seq

23 val mergeList1 : 'a seq list -> 'a seq

24 val mergeList2 : 'a list seq -> 'a seq

25 val mergeSeq : 'a seq seq -> 'a seq

26

27 val Naturals : int seq

28 val upTo : int -> int seq

29 val Primes : int seq

30 end

Listing 1: SEQ signature.

2 / 4



• drop: ’a seq * int -> ’a seq:
This is a generalization of List.drop: drop(〈x1, x2, · · ·〉, k) is 〈xk+1, xk+2, · · ·〉.

• append: ’a list * ’a seq -> ’a seq:
This is a generalization of List.@: append([x1, x2, · · · , xn], 〈y1, y2, · · ·〉) is 〈x1, x2, · · · , xn, y1, y2, · · ·〉.

• map: (’a -> ’b) -> ’a seq -> ’b seq:
This is a generalization of List.map: map F 〈x1, x2, · · ·〉 is 〈F (x1), F (x2), · · ·〉.

• filter: (’a -> bool) -> ’a seq -> ’a seq:
This is a generalization of List.filter: filter F S is the subsequence of S of elements x such
that F (x) is true.

• find: int -> (’a -> bool) -> ’a seq -> ’a option:
This is a generalization of List.find: find N F S is the first element x of S such that F (x)
is true, as an option. If no such element is found within the first N values of the sequence, the
function returns NONE.

• tabulate: (int -> ’a) -> ’a seq:
This is a generalization of List.tabulate: tabulate F is 〈F (0), F (1), F (2), F (3), · · ·〉.

• iter: (’a -> ’a) -> ’a -> ’a seq:
This is another way to build a sequence from a function: iter F x is 〈x, F (x), F (F (x)), · · ·〉.

• iterList: (’a list -> ’a) -> ’a list -> ’a seq:
This is a generalization of iter in which function F is applied to the previous n elements (when
n = 1, iterList is the same thing as iter):

iterList F [x1, x2, · · · , xn] is 〈x1, x2, · · · , xn, F ([x1, x2, · · · , xn]), F ([x2, · · · , xn, F ([x1, x2, · · · , xn])]),
F ([x3, · · · , xn, F ([x1, x2, · · · , xn]), F ([x2, · · · , xn, F ([x1, x2, · · · , xn])])]), · · ·〉.

For instance, iterList (fn [x,y] => x+y) [0,1] is the sequence of Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. . .

By convention, Iterlist(f) raises List.Empty if called on an empty list.

• repeat: ’a list -> ’a seq:
This is a way to build a sequence by repeating a list: repeat [x1, x2, ..., xn] is 〈x1, · · · , xn, x1, · · · , xn, x1, · · ·〉.
The function raises List.Empty if its input is empty.

• merge: ’a seq * ’a seq -> ’a seq:
This merges two sequences into a single sequence: merge(〈x1, x2, · · ·〉, 〈y1, y2, · · ·〉) is 〈x1, y1, x2, y2, · · ·〉.

• mergeList1: ’a seq list -> ’a seq:
This is a generalization of merge: It merges a list of sequences into a single sequence:
mergeList1 [〈x1, x2, · · ·〉, 〈y1, y2, · · ·〉, · · ·] is 〈x1, y1, · · · , x2, y2, · · ·〉. The function raises List.Empty
if its input is empty.

• mergeList2: ’a list seq -> ’a seq:
This is a generalization of merge: It merges a sequence of lists into a single sequence:
mergeList2 〈[x1, x2, · · · , xn1

], [y1, y2, · · · , yn2
], · · ·〉 is 〈x1, x2, · · · , xn1

, y1, y2, · · · , yn2
, · · ·〉.

• mergeSeq: ’a seq seq -> ’a seq:
This is a generalization of merge: It merges a sequence of sequences into a single sequence:
mergeSeq 〈s1, s2, · · ·〉 is a sequence that contains all the elements of s1 exactly once, all the
elements of s2 exactly once, etc.1 The order in which these elements appear is not specified. Note
that the resulting sequence does not consist of all the elements of s1 followed by all the elements
of s2, etc., since all the sequences are infinite in length.

• Naturals: int seq:
This is the sequence 〈0, 1, 2, · · ·〉.

• upTo: int -> int seq:
upTo N is the sequence 〈0, 1, 2, · · · , N − 1, N,N,N, · · ·〉.

1“Exactly once” means that each element of s1 appears once in the final result, but if s1 contains duplicates, these values
will appear several times in the result as well.

3 / 4



• Primes: int seq:
This is the sequence of prime numbers: 〈2, 3, 5, 7, 11, 13, 17, 19, · · ·〉. This sequence can be con-
structed from the sieve of Eratosthenes:

(a) Start with the sequence 〈2, 3, 4, 5, 6, · · ·〉.
(b) Keep the first number x: it is prime; Let L be the tail of the sequence.

(c) Remove all multiples of x from L; the result is L′.

(d) Recursively apply the algorithm from step 2 to L′.

Function filter can be used to remove the multiples of x from L. Of course, the recursive call
to sieve has to be delayed (i.e., made lazily) to avoid a non-terminating recursion.

Notes:

• This assignment must be submitted in a file named 8.sml. This file can load other files using function
use, if necessary. The given signature cannot be modified and should not be loaded in 8.sml.

• One aspect of this exercise is to make sure that functions never evaluate more of a sequence than
is actually needed. Even though sequences are potentially infinite, they can become “short” or even
empty. For instance, if N is the sequence of natural numbers 〈0, 1, 2, 3, 4, 5, · · ·〉 and

val short = filter (fn x => x<10) N

val empty = filter (fn x => x<0) N

then short only has 10 elements and empty has none. Therefore, hd(short) should return a value
but hd(empty) will run forever, looking for the first negative natural number, which does not exist. In
the same way, take(short,10) returns a list but take(short,11) runs forever, looking for the 11th
natural number that is less than 10.

In general, things that are not absolutely needed to calculate a value should not be evaluated. For
instance, tl(empty) should not loop but return a sequence (which is empty). For this reason, the
following implementation of tl is too greedy and is incorrect :

fun tl (Cons(NONE, f)) = tl(f())

| tl (Cons(SOME _, f)) = f()

It works on non empty sequences but will loop forever on empty ones.

• Some functions are more difficult than others but almost all can be implemented independently and in
any order. If a function looks difficult and confusing, skip it, move to the next one and come back to it
later. The nature of the assignment is such that the more functions you implement, the easier it gets.
For any function that is left unimplemented, you need to provide a dummy function so the structure
has the desired signature.

4 / 4


