CSE 150. Assignment 1

Out: Tue Jan 14
Due: Tue Jan 21 (in class)
Reading: Russell & Norvig, Chapter 13; Korb & Nicholson, Chapter 1.

1.1 Kullback-Leibler distance

Often it is useful to measure the difference between two probability distributions over the same random
variable. For example, as shorthand let

denote the conditional distributions over the random variable X for different pieces of evidence F # FE'.
The Kullback-Leibler (KL) distance between these distributions is defined as:

KL(p,q) = sz- log(pi/ i)

(a) By sketching graphs of log  and « — 1, verify the inequality
logex <x—1,

with equality if and only if 2 =1. Confirm this result by differentiation of log z — (x—1). (Note: all
logarithms in this problem are natural logarithms.)

(b) Use the previous result to prove that KL(p, ¢) > 0, with equality if and only if the two distributions
p; and ¢; are equal.

(c) Provide a counterexample to show that the KL distance is not a symmetric function of its arguments:

KL(p,q) # KL(q,p).

Despite this asymmetry, it is still common to refer to KL(p, ¢) as a measure of distance. Many algo-
rithms in machine learning are based on minimizing KL distances between probability distributions.

1.2 Conditional independence [RN 13.10]

Show that the following three statements about random variables X, Y, and Z are equivalent:
P(X,Y|Z) = PX|2)P(Y|Z)
PX|Y,Z) = P(X|2)
PY|X,Z) = P(Y|2)

You should become fluent with all these ways of expressing that X is conditionally independent of Y
given Z.




1.3 Creative writing

Attach events to the binary random variables X, Y, and Z that are consistent with the following patterns of
commonsense reasoning. You may use different events for the different parts of the problem.

(a) Explaining away:
P(X=1Y=1) > P(X=1),
P(X=1Y=1,Z=1) < P(X=1Y=1)
(b) Accumulating evidence:
P(X=1)<P(X=1Y=1)< P(X=1Y=1,Z=1)

(c) Conditional independence:
P(X=1,Y=1) # P(X=1)P(Y=1)
P(X=1Y=1|Z=1) = P(X=1|Z=1)P(Y=1|Z=1)

1.4 Probabilistic inference

Recall the probabilistic model that we described in class for the binary random variables { E = Earthquake,
B = Burglary, A = Alarm, J = JohnCalls, M = MaryCalls}. We also expressed this model as a belief
network, with the directed acyclic graph (DAG) and conditional probability tables (CPTs) shown below:

P(A=11E=0,B=0) = 0.00]
P(A=11E=0,B=1) = 0.94
P(A=1\E=1,B=0) = 0.29
P(A=11E=1,B=1) = 0.95

John Calls Mary Calls

Compute numeric values for the following probabilities, exploiting relations of conditional independence as
much as possible to simplify your calculations. You may re-use numerical results from lecture, but otherwise
show your work. Be careful not to drop significant digits in your answer.

P(E=1) =0.002 P(B=1) = 0.001

P(M=11A=0) = 0.01
P(M=11A=1) = 0.70

P(J=11A=0) = 0.05
P(J=11A=1) = 0.90

(a) P(E=1|A=1) () P(A=1|M=1) (e) P(A=1|M =0)
(b) P(E=1|A=1,B=0) (d) P(A=1|M=1,J=0) (f) P(A=1|M =0,B=1)

Consider your results in (b) versus (a), (d) versus (c), and (f) versus (e). Do they seem consistent with
commonsense patterns of reasoning?




