
CSE 150. Assignment 1

Out: Tue Jan 14
Due: Tue Jan 21 (in class)
Reading: Russell & Norvig, Chapter 13; Korb & Nicholson, Chapter 1.

1.1 Kullback-Leibler distance

Often it is useful to measure the difference between two probability distributions over the same random
variable. For example, as shorthand let

pi = P (X=xi|E),

qi = P (X=xi|E′)

denote the conditional distributions over the random variable X for different pieces of evidence E 6= E′.
The Kullback-Leibler (KL) distance between these distributions is defined as:

KL(p, q) =
∑
i

pi log(pi/qi).

(a) By sketching graphs of log x and x− 1, verify the inequality

log x ≤ x− 1,

with equality if and only if x=1. Confirm this result by differentiation of log x− (x−1). (Note: all
logarithms in this problem are natural logarithms.)

(b) Use the previous result to prove that KL(p, q) ≥ 0, with equality if and only if the two distributions
pi and qi are equal.

(c) Provide a counterexample to show that the KL distance is not a symmetric function of its arguments:

KL(p, q) 6= KL(q, p).

Despite this asymmetry, it is still common to refer to KL(p, q) as a measure of distance. Many algo-
rithms in machine learning are based on minimizing KL distances between probability distributions.

1.2 Conditional independence [RN 13.10]

Show that the following three statements about random variables X , Y , and Z are equivalent:

P (X,Y |Z) = P (X|Z)P (Y |Z)

P (X|Y,Z) = P (X|Z)

P (Y |X,Z) = P (Y |Z)

You should become fluent with all these ways of expressing that X is conditionally independent of Y
given Z.
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1.3 Creative writing

Attach events to the binary random variables X , Y , and Z that are consistent with the following patterns of
commonsense reasoning. You may use different events for the different parts of the problem.

(a) Explaining away:

P (X=1|Y =1) > P (X=1),

P (X=1|Y =1, Z=1) < P (X=1|Y =1)

(b) Accumulating evidence:

P (X=1) < P (X=1|Y =1) < P (X=1|Y =1, Z=1)

(c) Conditional independence:

P (X=1, Y =1) 6= P (X=1)P (Y =1)

P (X=1, Y =1|Z=1) = P (X=1|Z=1)P (Y =1|Z=1)

1.4 Probabilistic inference

Recall the probabilistic model that we described in class for the binary random variables {E = Earthquake,
B = Burglary, A = Alarm, J = JohnCalls,M = MaryCalls}. We also expressed this model as a belief
network, with the directed acyclic graph (DAG) and conditional probability tables (CPTs) shown below:

Alarm

Earthquake Burglar

John Calls Mary Calls

P(E=1) = 0.002 P(B=1) = 0.001

P(A=1|E=0,B=0) = 0.001
P(A=1|E=0,B=1) = 0.94
P(A=1|E=1,B=0) = 0.29
P(A=1|E=1,B=1) = 0.95

P(J=1|A=0) = 0.05
P(J=1|A=1) = 0.90

P(M=1|A=0) = 0.01
P(M=1|A=1) = 0.70

Compute numeric values for the following probabilities, exploiting relations of conditional independence as
much as possible to simplify your calculations. You may re-use numerical results from lecture, but otherwise
show your work. Be careful not to drop significant digits in your answer.

(a) P (E=1|A=1) (c) P (A=1|M=1) (e) P (A=1|M=0)
(b) P (E=1|A=1, B=0) (d) P (A=1|M=1, J=0) (f) P (A=1|M=0, B=1)

Consider your results in (b) versus (a), (d) versus (c), and (f) versus (e). Do they seem consistent with
commonsense patterns of reasoning?
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