
CSE 150. Assignment 2 Winter 2014

Out: Tue Jan 21
Due: Tue Jan 28
Reading: Russell & Norvig, Chapter 14; Korb & Nicholson, Chapter 2.

2.1 Probabilistic reasoning

A patient is known to have contracted a rare disease which comes in two forms, represented by the values
of a binary random variable X ∈ {0, 1}. Symptoms of the disease are represented by the binary random
variables Yk ∈ {0, 1}, and knowledge of the disease is summarized by the belief network:

X

Y1 Y2 Y3 Yn...
The conditional probability tables (CPTs) for this belief network are as follows. In the absence of evi-
dence, both forms of the disease are equally likely, with prior probabilities: P (X=0) = P (X=1) = 1

2 .
In the first form of the disease (X = 0), all the symptoms are uniformly likely to be observed, with
P (Yk=0|X=0) = 1

2 for all k. By contrast, in the second form of the disease (X = 1), the first symptom
occurs with probability one,

P (Y1=1|X=1) = 1,

while the kth symptom (with k≥2) occurs with probability

P (Yk=1|X=1) =
f(k − 1)

f(k)
,

where the function f(k) is defined by
f(k) = 2k + (−1)k.

Suppose that on the kth day of the month, a test is done to determine whether the patient is exhibiting the
kth symptom, and that each such test returns a positive result. Thus, on the kth day, the doctor observes the
patient with symptoms {Y1=1, Y2=1, . . . , Yk=1}. Based on the cumulative evidence, the doctor makes a
new diagnosis each day by computing the ratio:

rk =
P (X=1|Y1=1, Y2=1, . . . , Yk=1)

P (X=0|Y1=1, Y2=1, . . . , Yk=1)
.

If this ratio is greater than 1, the doctor diagnoses the patient with the X=1 form of the disease; otherwise,
with the X=0 form. Compute the ratio rk as a function of k. How does the doctor’s diagnosis depend on the
day of the month? Does the diagnosis become more or less certain as more symptoms are observed? Explain.
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2.2 Noisy-OR

YX

Z

Nodes: X ∈ {0, 1}, Y ∈ {0, 1}, Z ∈ {0, 1}

Noisy-OR CPT: P (Z = 1|X, Y ) = 1− (1− px)
X (1− py)

Y

Parameters: px ∈ [0, 1], py ∈ [0, 1], py > px

Suppose that the nodes in this network represent binary random variables and that the CPT for P (Z|X,Y )
is parameterized by a noisy-OR model, as shown above. Suppose also that

0 < P (X=1) < 1,

0 < P (Y =1) < 1,

while the parameters of the noisy-OR model satisfy:

0 < px < py < 1.

Consider the following pairs of probabilities. In each case, indicate whether the probability on the left is
equal (=), greater than (>), or less than (<) the probability on the right.

(a) P (Z=1|X=0, Y =0) P (Z=1|X=0, Y =1)

(b) P (Z=1|X=0, Y =1) P (Z=1|X=1, Y =0)

(c) P (Z=1|X=1, Y =0) P (Z=1|X=1, Y =1)

(d) P (X=1) P (X=1|Y =1)

(e) P (X=1) P (X=1|Z=1)

(f) P (X=1|Y =1, Z=1) P (X=1|Z=1)

(g) P (X=1, Y =1, Z=1) P (X=1)P (Y = 1)P (Z=1)
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2.3 Conditional independence

For the belief network shown below, indicate whether the following statements of conditional independence
are true (T) or false (F).

HG

A

D E

C

F

B

P (B|G,C) = P (B|G)

P (F,G|D) = P (F |D)P (G|D)

P (A,C) = P (A)P (C)

P (D|B,F,G) = P (D|B,F,G,A)

P (F,H) = P (F )P (H)

P (D,E|F,H) = P (D|F )P (E|H)

P (F,C|G) = P (F |G)P (C|G)

P (D,E,G) = P (D)P (E)P (G|D,E)

P (H|C) = P (H|A,B,C,D, F )

P (H|A,C) = P (H|A,C,G)
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2.4 Subsets

A

D E

C

F

B

For the belief network shown above, consider the following statements of conditional independence. Indicate
the largest subset of nodes S ⊂ {A,B,C,D,E, F} for which each statement is true. Note that one possible
answer is the empty set S=∅ or S={} (whichever notation you prefer). The first one is done as an example.

P (A) = P (A|S) S = {B,C,E}

P (A|D) = P (A|S)

P (A|B,D) = P (A|S)

P (B|D,E) = P (B|S)

P (E) = P (E|S)

P (E|F ) = P (E|S)

P (E|D,F ) = P (E|S)

P (E|B,C) = P (E|S)

P (F ) = P (F |S)

P (F |D) = P (F |S)

P (F |D,E) = P (F |S)
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2.5 Zip codes

Consider the belief network shown below, where the random variable Z ∈ {0, 1, . . . , 99999} stores a five-
digit zip code and the random variable Di ∈ {0, 1, . . . , 9} reveals only the zip code’s ith digit. Also, suppose
that the zip codes are distributed accorded to their population density:

P (Z = z) =
POP(z)∑99999

z′=0 POP(z′)
,

where POP(z) denotes the population of zip code z. Note that in this model the conditional probability tables
for the random variables Di are particularly simple:

P (Di = d|Z = z) =

{
1 if d is the ith digit of z,
0 otherwise.

Now imagine a game in which you are asked to guess the zip code, one number at a time, of a random person
sampled from the census. The rules are as follows: after each number (0 through 9) that you guess, you’ll be
told whether the number appears in the zip code, and if it does appear, all the places that it occupies. Given
the evidence you have at any stage in this game, the critical question is what number to guess next.

D1 D2

Z

D3 D4 D5

Let’s work an example. Suppose that after three guesses—the numbers 6, 7, 4—you’ve learned that the
number 7 does not appear, and that the numbers 6 and 4 appear as follows:

6 6 4

Now consider your next guess: call it d. In this game the best guess is the value of d that maximizes

P
(
D2=d or D4=d

∣∣∣ D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7}
)
.

In other works, pick the value of d that is most likely to appear in the missing fields of the zip code. For any
value of d we can compute this probability as follows:

P
(
D2=d or D4=d

∣∣∣ D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7}
)

=
∑
z

P
(
Z=z,D2=d or D4=d

∣∣∣ D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7}
)
, marginalization

=
∑
z

P (D2=d or D4=d|Z=z)P (Z=z|D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7}), product rule & CI
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where in the third line we have exploited the conditional independence (CI) of the digits Di given the zip
code Z. Inside the sum there are two terms, and they are both easy to compute. In particular, the first term
is more or less trivial:

P (D2=d or D4=d|Z=z) =

{
1 if d is the second or fourth digit of z
0 otherwise.

And the second term we obtain from Bayes rule:

P (Z=z|D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7})

=
P (D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7} | Z=z)P (Z=z)

P (D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7})
Bayes rule

In the numerator of Bayes rule are two terms; the left term is equal to zero or one (depending on whether
the evidence is compatible with the zip code z), and the right term is the prior probability P (Z = z), as
determined by the population density. The denominator of Bayes rule is given by:

P (D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7})
=

∑
z

P (Z=z,D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7}), marginalization

=
∑
z

P (D1=6, D3=6, D5=4, D2 6∈{4, 6, 7}, D4 6∈{4, 6, 7} | Z=z)P (Z=z), product rule

where again all the left terms inside the sum are equal to zero or one. Note that the denominator merely
sums the prior probabilities of zip codes that are compatible with the observed evidence.

Now let’s consider the general problem. Let E denote the evidence at some intermediate round of the game:
in general, some numbers will have been guessed correctly and their places revealed in the zip code, while
other numbers will have been guessed incorrectly and thus revealed to be absent. There are two essential
computations. The first is the posterior probability, obtained from Bayes rule:

P (Z=z|E) =
P (E|Z=z)P (Z=z)∑
z′ P (E|Z=z′)P (Z=z′)

.

The second key computation is the predictive probability, based on the evidence, that the number d appears
somewhere in the zip code:

P
(
Di=d for some i∈{1, 2, 3, 4, 5}

∣∣∣E) =
∑
z

P
(
Di=d for some i∈{1, 2, 3, 4, 5}

∣∣∣Z=z
)
P
(
Z=z

∣∣∣E).
Note in particular how the first computation feeds into the second. Your assignment in this problem is
implement both of these calculations. Turn in a printout of your source code along with answers to the
following questions. Note that you may program in the language of your choice.

(a) Download the file zipcode.txt that appears with the homework assignment. The file contains a list of
zip codes and their populations from the 2010 census. (Note that some zip codes do not appear in this
list; for this assignment you should assume that missing zip codes have zero probability.) From the
data given compute the prior probability P (z) = POP(z)/POPtotal. As a sanity check, print out the
five most populated zip codes, and confirm that they correspond to heavily populated areas.
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(b) Consider the following stages of the game. For each of the following, indicate the best next guess—
namely, the number d that is most likely (probable) to be among the missing digits. Also report the
probability P (Di=d for some i∈{1, 2, 3, 4, 5}|E) for your guess d.

(i) First guess:

(ii) None correctly guessed:
Incorrectly guessed: 0, 3

(iii) Correctly guessed: 9 5
Incorrectly guessed: none

(iv) Correctly guessed: 7 7 9
Incorrectly guessed: 2, 3

(v) Correctly guessed: 2 0 8
Incorrectly guessed: 3, 4, 5, 6, 7
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