
CSE 150. Assignment 5

Out: Tue Feb 18
Due: Tue Feb 25

Supplementary reading:

• Russell & Norvig, Chapter 15.

• L. R. Rabiner (1989). A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2):257–286.

5.1 Viterbi algorithm

In this problem, you will decode an English phrase from a long sequence of non-text observations. To
do so, you will implement the same algorithm used in modern engines for automatic speech recognition.
In a speech recognizer, these observations would be derived from real-valued measurements of acoustic
waveforms. Here, for simplicity, the observations only take on binary values, but the high-level concepts are
the same.

Consider a discrete HMM with n = 26 hidden states St∈{1, 2, . . . , z} and binary observations Ot∈{0, 1}.
Download the ASCII data files from the course web site for this assignment. These files contain parameter
values for the initial state distribution πi = P (S1= i), the transition matrix aij = P (St+1= j|St= i), and
the emission matrix bik = P (Ot=k|St= i), as well as a long bit sequence of T =68000 observations.

Use the Viterbi algorithm to compute the most probable sequence of hidden states conditioned on this
particular sequence of observations. As always, you may program in the language of your choice. Turn in
the following:

(a) a hard-copy print-out of your source code
(b) a plot of the most likely sequence of hidden states versus time.

To check your answer: suppose that the hidden states {1, 2, . . . , 26} represent the letters {a, b, . . . , z} of the
English alphabet. If you have implemented the Viterbi algorithm correctly, the most probable sequence of
hidden states (ignoring repeated elements) will reveal an important public message for our times.
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5.2 Conditional independence

Consider the hidden Markov model (HMM) shown below, with hidden states St and observations Ot for
times t∈{1, 2, . . . , T}. State whether the following statements of conditional independence are true or false.

P (St|St−1) = P (St|St−1, Ot)

P (St|St−1) = P (St|St−1, St+1)

P (St|St−1) = P (St|St−1, Ot−1)

P (St|Ot−1) = P (St|O1, O2, . . . , Ot−1)

P (Ot|St−1) = P (Ot|St−1, Ot−1)

P (Ot|Ot−1) = P (Ot|O1, O2, . . . , Ot−1)

P (O1, O2, . . . , OT ) =
∏T

t=1 P (Ot|O1, . . . , Ot−1)

P (S2, S3, . . . , ST |S1) =
∏T

t=2 P (St|St−1)

P (S1, S2, . . . , ST−1|ST ) =
∏T−1

t=1 P (St|St+1)

P (O1, O2, . . . , OT |S1, S2, . . . , ST ) =
∏T

t=1 P (Ot|St)

P (S1, S2, . . . , ST |O1, O2, . . . , OT ) =
∏T

t=1 P (St|Ot)

P (S1, S2, . . . , ST , O1, O2, . . . , OT ) =
∏T

t=1 P (St, Ot)

S1 S2 S3 ST-1 ST

O2 O3 OT-1 OT

...

O1
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5.3 Inference in HMMs

Consider a discrete HMM with hidden states St, observations Ot, transition matrix aij=P (St+1=j|St= i)
and emission matrix bik=P (Ot=k|St= i). In class, we defined the forward-backward probabilities:

αit = P (o1, o2, . . . , ot, St= i),

βit = P (ot+1, ot+2, . . . , oT |St= i),

for a particular observation sequence {o1, o2, . . . , oT } of length T . In terms of these probabilities, which
you may assume to be given, as well as the transition and emission matrices of the HMM, show how to
(efficiently) compute the following posterior probabilities:

(a) P (St+1=j|St= i, o1, o2, . . . , oT )

(b) P (St= i|St+1=j, o1, o2, . . . , oT )

(c) P (St−1= i, St=j, St+1=k|o1, o2, . . . , oT )

(d) P (St−1= i, St+1=k|o1, o2, . . . , oT )

In all these problems, you may assume that t > 1 and t < T ; in particular, you are not asked to consider the
boundary cases.
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