CSCl-4448 - Boese

Objectives

 Definition

 Why

« How

* Design Considerations

University of Colorado
@ Boulder CSClI-4448 Boese

Definition

“Aftach additional responsibilities to an object
dynamically. Decorators provide a flexible
alternative to subclassing for extended

functionality.”
-Gang of Four

University of Colorado
@ Boulder CSClI-4448 Boese

Definition

« Name “Decorator”

— Extended behavior or functionality build upon some
existing substructure

e |ntent

— Dynamically add behavior to an object

* Inheritance adds behavior statically —once the particular
subclass is instantiated, the behavior is fixed

@J University of Colorado CSCI-4448 Boese
Boulder

@ University of Colorado CSCI-4448 Boese
Boulder

Why

* As we've seen before, subclassing can lead to
classes with low cohesion, and very large class

hierarchies.
i
Sphere Cone Snowman OpenGLSnowman
OpenGLSphere => ﬂ
| JIL]
Direct3DSphere RayTraceSphere OpenGLCone RayTraceSnowman Direct3DSnowman
Direct3DCone RayTraceCone

University of Colorado
@T Boulder CSClI-4448 Boese

Why

e Sometimes, subclassing makes sense
— One type of object may be a specialization of another

— Still can lead to large hierarchies

 Window, ScrollWindow, FancyBorderWindow,
FancyBorderScrollWindow... - p—— TR

Click left mouse button to place a circle.
Click right mouse button to clear drawing area)]

FrameDemo IZIIED__Q

5 '\ 4 ScrollDemo | l'
1“ Click left mouse cle
I I llciick right mouse ing area [
A B
3l B Q{ {
' ‘ 7
Ll I
i l
S M
3]

University of Colorado
@T Boulder CSCI-4448 Boese

Why

* |n this case, the core window remains
unchanged, but we're adding specific detalls

FrameDemo |Z| |§ E|

FrameDemo |- |[B1|[¥|

Click left mouse button to place 3 circle

Click right mouse button to clear drawing area
FrameDemo [|3

University of Colorado

Boulder CSCIl-4448 Boese

Why

« Rather than creating several subclasses, it'd be
oreferable to have some common interface, and
e able to compose what we want, where every
niece follows the same interface

B FrameDemo g@@

ttttttt

ttttt

myWindow.draw() = fancyFrame.draw() = scrollBar.draw() = basicFrame.draw()

University of Colorado
@T Boulder CSClI-4448 Boese

@ University of Colorado CSCI-4448 Boese
Boulder

Decorator Pattern - Participants

« Component

— Defines the interface for objects that can have
responsibilities added dynamically

 ConcreteComponent
— Defines an object to which additional responsibilities
can be attached
* Decorator

— Maintains a reference to a Component object and
defined an interface that conforms to Component’s
Interface

« ConcreteDecorator
— Adds responsibilities to the component

@J University of Colorado CSCI-4448 Boese
Boulder

Decorator Pattern - Structure

Component

+ Operation()

ConcreteComponent

Decorator

- component : Component

+ Operation()

+ Operation()

—————————— }

[

Operation() {

component -> Operation()

ConcreteDecoratorA

- addedAttribute :

+ Operation()

@ University of Colorado
Boulder

ConcreteDecoratorB

+ Operation()

+ AddedBehavior()

Operation() {

i

Decorator::Operation();
AddedBehavior();

CSCIl-4448 Boese

Decorator Pattern - Structure

Component

Recall: Composites tend to
be central to a lot of other
patterns

+ Operation()

/

ConcreteComponent Decorator Operation() {
+ Operation() - compon_ent : Component component -> Operation()
+ Operation() ~ |-=—————-—1 }
ConcreteDecoratorA ConcreteDecoratorB Operation() {
- addedAttribute : - Decorator::Operation();
. + Operation() | | AddedBehavior();
+ Operation() + AddedBehavior() } '

@ University of Colorado
Boulder

CSCIl-4448 Boese

Decorator Pattern —Example

I
Fabir Segse itz

oI e draw()
S S
PlainWindow Decorator
F draw() - baseWindow : Window
+ draw()
EFrameDemn g@@ ?
FancyBorder ScrollBar
+ draw() + draw()
+ scroll()
|<‘|1/ ll::luttons |\r’|

L)

University of Colorado
Boulder

CSCIl-4448 Boese

Decorator Pattern —Example

Ccomponent ConcreteComponent
public abstract class Window { public class PlainWindow extends Window {
public abstract void draw(); public void draw() { .. };
} }
Decorator

public abstract class Decorator extends Component ({
private Window baseWindow;

public void draw() { baseWindow.draw(); }
}
ConcreteDecorator ConcreteDecorator
public class ScrollBar extends Decorator public class FancyBorder extends
{ Decorator
public void draw() { {
super.draw () ; public void draw () {
// Extra drawing super.draw() ;
} // Extra drawing
public void scroll () { }
// added behavior }
}
}
University of Colorado
@]’ Boudor CSCI-4448 Boese

Decorator Example

« Can create a base instance of some plain
window

Window myWindow = new PlainWindow () ;

e Then, add some decoration

Window oldWindow = myWindow;
Window myWindow = new FancyBorder ()
myWindow.baseWindow = oldWindow;

* Modify the window to use another decoration

Window oldWindow = myWindow.baseWindow;
Window myWindow = new ScrollBar();
myWindow.baseWindow = oldWindow;

@ University of Colorado
Boulder

CSCIl-4448 Boese

Design Considerations

@ University of Colorado CSCI-4448 Boese
Boulder

Consequences

More flexible than static inheritance
« Add responsibilities to an object by wrapping itin a
decorator, vs. creating a new class for each added
responsibility
Avoid feature-laden classes

» Create objects consisting of only the decorations you need,
not objects with several inherited features, only some of
which you use

Decorators and components are not identical

A decorator is a different object, not a modification of the
same object (e.qg., as through delegation). Hence, don’t rely
on object identity with decorators

Lots of little moving parts
» Very flexible system, but hard to learn and debug

University of Colorado
@ Boulder CSClI-4448 Boese

Implementation Considerations

* Interface conformance

« All Decorator and Component classes must share the
same interface, though decorators can add to this
Interface

« Omitting Decorator abstract class

 If only adding one responsibility, Decorator and
ConcreteDecorator can be merged. Let
ConcreteDecorator call Operation() on its component

« Keep Component lightweight

* Decorator inherits from Component. If Component
stores lots of data, then every decorator also stores this
data, resulting in lots of memory being used

« Component should just define a lightweight interface,
not many implementation details

@J University of Colorado CSCI-4448 Boese
Boulder

Pattern Comparison

Recursive
Composition

Provides a level of
indirection to an
object

Common interface

YES, but intent is to
provide a means of
adding responsibility in
a recursive manner

YES, the intentis to
add behavior to the
base object

YES, common interface
allows for behavior to
be attached or
detached dynamically

YES, intentis to
provide a recursive
representation to a
composed object where
parts can be treated in
the same manner as a
whole

NO, the composed
object can be accessed
directly

YES, common interface
allows for clients to
interact with any part of
the composed object in
a common way

NO, proxy is usually a
single object used to
provide indirect access
to another object

YES, the intent is to act
as a stand-in to the
base object

YES, common interface
allows proxy to be used
as base object, but
intercept and handle
messages

University of Colorado

@ Boulder

CSCIl-4448 Boese

Further Reading

* Design Patterns

Desion Patterns oo 175 - 184

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Jehnson
John Vlissides

Foreword by Grady Booch

DESIGN PATTERNS
EXPLAINED

* Design Patterns Explained

Chapter 17
pp. 297-310

University of Colorado
@T Boulder CSCI-4448 Boese

