
CSCI-4448 Boese

Headline

Decorator Pattern

CSCI-4448 - Boese

CSCI-4448 Boese

Objectives

• Definition

• Why

• How

• Design Considerations

CSCI-4448 Boese

Definition

“Attach additional responsibilities to an object

dynamically. Decorators provide a flexible

alternative to subclassing for extended

functionality.”

-Gang of Four

CSCI-4448 Boese

Definition

• Name “Decorator”

– Extended behavior or functionality build upon some

existing substructure

• Intent

– Dynamically add behavior to an object

• Inheritance adds behavior statically – once the particular

subclass is instantiated, the behavior is fixed

CSCI-4448 Boese

Why

CSCI-4448 Boese

Why

• As we’ve seen before, subclassing can lead to

classes with low cohesion, and very large class

hierarchies.

CSCI-4448 Boese

Why

• Sometimes, subclassing makes sense

– One type of object may be a specialization of another

– Still can lead to large hierarchies

• Window, ScrollWindow, FancyBorderWindow,

FancyBorderScrollWindow…

CSCI-4448 Boese

Why

• In this case, the core window remains

unchanged, but we’re adding specific details

+

+

+ +

=

=

=

CSCI-4448 Boese

Why

• Rather than creating several subclasses, it’d be

preferable to have some common interface, and

be able to compose what we want, where every

piece follows the same interface

myWindow.draw() fancyFrame.draw() scrollBar.draw() basicFrame.draw()

CSCI-4448 Boese

How

CSCI-4448 Boese

Decorator Pattern - Participants

• Component
– Defines the interface for objects that can have

responsibilities added dynamically

• ConcreteComponent
– Defines an object to which additional responsibilities

can be attached

• Decorator
– Maintains a reference to a Component object and

defined an interface that conforms to Component’s
interface

• ConcreteDecorator
– Adds responsibilities to the component

CSCI-4448 Boese

Decorator Pattern - Structure

CSCI-4448 Boese

Decorator Pattern - Structure

Recall: Composites tend to

be central to a lot of other

patterns

CSCI-4448 Boese

Decorator Pattern –Example

CSCI-4448 Boese

Decorator Pattern –Example

Component
public abstract class Window {

 public abstract void draw();

}

ConcreteComponent
public class PlainWindow extends Window {

 public void draw() { … };

}

Decorator
public abstract class Decorator extends Component {

 private Window baseWindow;

 public void draw() { baseWindow.draw(); }

}

ConcreteDecorator
public class ScrollBar extends Decorator

{

 public void draw() {

 super.draw();

 // Extra drawing

 }

 public void scroll() {

 // added behavior

 }

}

ConcreteDecorator
public class FancyBorder extends

 Decorator

{

 public void draw() {

 super.draw();

 // Extra drawing

 }

}

CSCI-4448 Boese

Decorator Example

• Can create a base instance of some plain
window
 Window myWindow = new PlainWindow();

• Then, add some decoration
 Window oldWindow = myWindow;

 Window myWindow = new FancyBorder();

 myWindow.baseWindow = oldWindow;

• Modify the window to use another decoration
 Window oldWindow = myWindow.baseWindow;

 Window myWindow = new ScrollBar();

 myWindow.baseWindow = oldWindow;

CSCI-4448 Boese

Design Considerations

CSCI-4448 Boese

Consequences

• More flexible than static inheritance
• Add responsibilities to an object by wrapping it in a

decorator, vs. creating a new class for each added
responsibility

• Avoid feature-laden classes
• Create objects consisting of only the decorations you need,

not objects with several inherited features, only some of
which you use

• Decorators and components are not identical
• A decorator is a different object, not a modification of the

same object (e.g., as through delegation). Hence, don’t rely
on object identity with decorators

• Lots of little moving parts
• Very flexible system, but hard to learn and debug

CSCI-4448 Boese

Implementation Considerations

• Interface conformance
• All Decorator and Component classes must share the

same interface, though decorators can add to this
interface

• Omitting Decorator abstract class
• If only adding one responsibility, Decorator and

ConcreteDecorator can be merged. Let
ConcreteDecorator call Operation() on its component

• Keep Component lightweight
• Decorator inherits from Component. If Component

stores lots of data, then every decorator also stores this
data, resulting in lots of memory being used

• Component should just define a lightweight interface,
not many implementation details

CSCI-4448 Boese

Pattern Comparison

Decorator Composite Proxy

Recursive

Composition

YES, but intent is to

provide a means of

adding responsibility in

a recursive manner

YES, intent is to

provide a recursive

representation to a

composed object where

parts can be treated in

the same manner as a

whole

NO, proxy is usually a

single object used to

provide indirect access

to another object

Provides a level of

indirection to an

object

YES, the intent is to

add behavior to the

base object

NO, the composed

object can be accessed

directly

YES, the intent is to act

as a stand-in to the

base object

Common interface

YES, common interface

allows for behavior to

be attached or

detached dynamically

YES, common interface

allows for clients to

interact with any part of

the composed object in

a common way

YES, common interface

allows proxy to be used

as base object, but

intercept and handle

messages

CSCI-4448 Boese

Further Reading

• Design Patterns
 pp. 175 - 184

• Design Patterns Explained
 Chapter 17

 pp. 297-310

