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Response to quiz

Homework 1 (late due date, 20 percent penalty) is due today.
Remember, homework must be stapled with a cover-sheet.



Mathematical Induction

Mathematical induction is a special technique for proving a
“for all statement”

∀n ∈ N P(n)

where the quantification is over the natural numbers
(N = {1,2,3, . . .}.) It says that if we can prove
• P(1) (the “base case”), and
• ∀k ∈ N (P(k)⇒ P(k + 1)) (the “induction step”)

then ∀n ∈ N P(n) will follow.



Think of the various propositions P(1), P(2), P(3) and so on
as being like a row of dominoes.

If we can knock over the first domino (the base case,
P(1)). . . and if each domino knocks over the next one (the
induction step, P(k)⇒ P(k + 1)). . . then all the dominoes must
fall (∀n ∈ N P(n)).



Formal statement

Kind of Statement Strategies to Trans-
form (when state-
ment is a goal)

Strategies to Infer
(when statement is
a given)

Universal state-
ment for all nat-
ural numbers,
∀n ∈ N P(n)

Proof by induc-
tion: Prove P(1)
and also prove
∀n ∈ N P(n) ⇒
P(n + 1)



An example: Fermat numbers

Definition

The Fermat number Fn = 22n
+ 1.

n 2n Fn = 22n
+ 1

0 1 3
1 2 5
2 4 17
3 8 257
4 16 65537

Notice F0F1 = 3× 5 = 15 = F2 − 2,
F0F1F2 = 3× 5× 17 = 255 = F3 − 2,
F0F1F2F3 = 3× 5× 17× 257 = 65535 = F4 − 2. Will this
pattern continue?



1: Theorem: For all natural numbers n, F0F1 · · ·Fn = Fn+1 − 2

13: Thus we have shown for all natural numbers n, F0F1 · · ·Fn = Fn+1 − 2,
as required. �
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22k+1
)2
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Primes and Fermat numbers

Fermat guessed that all the Fn were prime. F0 through F4
are indeed prime, but

F5 = 4294967297 = 6700417× 641.

However, one does have

Theorem

No two different Fermat numbers have a prime factor in
common.

Since there are infinitely many Fermat numbers, and each
has at least one prime factor that doesn’t belong to any of the
others, this shows that there are infinitely many primes.



1: Theorem: No two Fermat numbers have a common prime factor

9: Thus we have shown no two Fermat numbers have a common prime
factor, as required. �
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1: Theorem: No two Fermat numbers have a common prime factor
2: Assume, seeking a contradiction that the statement “no two
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3: Then there is a prime p that divides both Fm and Fm+k ,

for some natural numbers m, k .
4: Notice that p must be odd, since all the Fermat numbers

are odd.
5: Since p divides Fm, it also divides the product

F1 · · ·Fm+k−1, which equals Fm+k − 2 by our previous
theorem.

6: Since p divides Fm+k and Fm+k − 2, it divides 2.
7: But this is a contradiction: no odd prime divides 2.
8: This contradiction shows that our assumption was false

and thus that no two Fermat numbers have a common prime
factor.
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factor, as required. �


