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A 
COUPLE OF  YEARS AGO THE DIRECTORS OF A WOMEN’S 
clothing company asked me to help them develop 
better fashion recommendations for their clients. 
No one in their right mind would seek my person-
al advice in  an area I know so little about—I am, 

after all, a male computer scientist—but they were not asking 
for my personal advice. They were asking for my machine-learn-
ing advice, and I obliged. Based purely on sales fi gures and cli-
ent surveys, I was able to recommend to women whom I have 
never met fashion items I have never seen. My recommenda-
tions beat the performance of professional stylists. Mind you, I 
still know very little about women’s fashion.

Machine learning is a branch of computer science that enables 
computers to learn from experience, and it is everywhere. It 
makes Web searches more relevant, blood tests more accurate and 
dating services more likely to fi nd you a potential mate. At its sim-
plest, machine-learning algorithms take an existing data set, comb 
through it for patterns, then use these patterns to generate predic-
tions about the future. Yet advances in machine learning over the 
past decade have transformed the fi eld. Indeed, machine-learning 
techniques are responsible for making computers “smarter” than 
humans at so many of the tasks we wish to pursue. Witness Wat-
son, the IBM computer system that used machine learning to 

beat the best Jeopardy players in the world.
The most important machine-learning 

competition did not involve talking Jeopar-
dy-playing machines, however. A few years 
ago Netfl ix, the online movie rental compa-
ny, wanted to help its customers fi nd mov-
ies that they would love— especially fi lms 
that were not high-demand “new release” 
titles but rather from  their largely ignored 
back catalogue. The company already had 
an in-house movie recommendation sys-
tem, but executives knew it was far from 

perfect. So the company launched a competition to improve on 
existing e
 orts . The rules were simple: the fi rst entry to beat the 
performance of the in-house system by 10 percent would earn a 
$1-million prize. Tens of thousands of people from around the 
world signed up.

For a machine-learning researcher, the competition was a 
dream (and not just for the prize money, attractive though it 
was). The most critical components of any machine-learning 
system are the data, and the Netfl ix prize o
 ered 100 million 
points of real data, ready to download.

 TRAINING DAYS
THE NETFLIX COMPETITION  lasted for almost three years. Many 
groups attacked the problem by breaking down individual mov-
ies into long arrays of di
 erent attributes. For example, you 
could score any movie on various traits, such as how funny it is, 
how complicated it is or how attractive the actors are. For each 
viewer, you go back and take a look at the movies he has re-
viewed to see how much he values each of these attributes—how 
much he enjoys comedy, whether he prefers simple or complicat-
ed plots, and how much he likes to look at attractive movie stars 
[see box on page 81]. 

Now prediction becomes a simple matter of matching the 
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Machine learning  is a branch of comput-
er science that combs through data sets 
to make predictions about the future.

It is used  to identify economic trends, 
personalize recommendations and build 
computers that appear to think.

Although machine learning  has be-
come incredibly popular, it only works 
on problems with large data sets. 

Practitioners of machine learning  must 
be careful to avoid having machines iden-
tify patterns that do not really exist.
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viewer’s tastes to the new movie’s attributes. If he loves comedies 
and complex plots, chances are he might like a knotty caper such 
as Some Like It Hot or A Fish Called Wanda. After the algorithm 
matches dozens of these attributes, the final recommendation 
should be a good predictor of how the viewer will like the movie.

We naturally think in easily identifiable attributes such as 
“comedy” or “complex plot,” but algorithms need make no such 
distinctions. In fact, the entire process is automated—researchers 
never bother with analyzing movie content. The machine-learn-
ing algorithm will start with random, nameless attributes. As it 
gets data about how viewers rated movies in the past, it fine-tunes 
attributes until they correspond to how viewers rate movies. 

For example, if people who like movie A also tend to like 
movies B, C and D, the algorithm will come up with a new attri-
bute that is common to A, B, C and D. This happens in the so-
called training phase, where the computer searches through 
millions of viewer ratings. The goal of this phase is to create a 
set of objective attributes that are based on actual ratings, not 
on subjective analysis. 

It may be hard to interpret the different attributes that the 
machine-learning algorithm produces; they may not be as 
straightforward as “comedy content.” In fact, they can be quite 
subtle, even incomprehensible, because the algorithm is only try-
ing to find the best way to predict how a viewer would rate a 
movie, not necessarily explain to us how it is done. If a system 
performs well, we do not insist on understanding how it does so. 

This is not the way the world is used to operating. Early in 
my career I developed a credit-approval system for a bank. 
When I was done, the bank wanted me to interpret what each 
attribute meant. The request had nothing to do with the sys-
tem’s performance, which was fine. The reason was legal: banks 
cannot deny credit to someone without articulating a rationale, 
and they cannot just send a letter to someone saying that the ap-
plication was denied because X is less than 0.5.

Different machine-learning systems will develop unique sets 
of attributes. In the final weeks of the Netflix competition, groups 
that had been working independently began to blend their algo-
rithms using so-called aggregation techniques. In the final hour 
of the three-year competition, two teams were still fighting for 
the top prize. The scoreboard showed a slight edge to The Ensem-
ble, a team that included a Ph.D. alumnus of my research group at 
the California Institute of Technology, over BellKor’s Pragmatic 
Chaos. Yet the final audited tally put the teams in a statistical 
dead heat—each achieved a 10.06 percent improvement over the 
original algorithm. According to the rules of the competition, in 
the event of a tie the award would go to the team that submitted 
its solution first. After three years of competition and in the last 
hour of battle, BellKor’s Pragmatic Chaos submitted its solution 
20 minutes earlier than The Ensemble. A 20-minute delay in a 
three-year competition made a difference of a million bucks.

The PerfecT fiT
the type of machine learning used in the movie-rating competi-
tion is called supervised learning. It is also used in tasks such as 
medical diagnosis. For example, we could provide a computer 
with thousands of images of white blood cells from patients’ his-
torical records, along with information about whether each im-
age is of a cancerous or noncancerous cell. From this information, 
the algorithm will learn to apply certain cell attributes—shape, 

size and color, perhaps—to identify malignant cells. Here the re-
searcher “supervises” the learning process. For each image in the 
training data, he or she gives the computer the correct answer. 

Supervised learning is the most common type of machine 
learning, but it is not the only one. Roboticists, for example, may 
not know the best way to make a two-legged robot walk. In that 
case, they could design an algorithm that experiments with a 
number of different gaits. If a particular gait makes the robot 
fall down, the algorithm learns to not do that any more. 

This is the reinforcement-learning approach. It is basically 
trial and error—a learning strategy we are all familiar with. In a 
typical reinforcement-learning scenario—human or machine—
we face a situation in which some action is needed. Instead of 
someone telling us what to do, we try something and see what 
happens. Based on what happens, we reinforce the good actions 
and avoid the bad actions in the future. Eventually both we and 
the machines learn the correct actions for different situations. 

For example, consider Internet search engines. The founders 
of Google did not wade through the Web circa 1997 to train its 
computers to recognize pages about, say, “Dolly the sheep.” In-
stead their algorithms crawled the Web to generate a first draft 
of results, then they relied on user clicks to reinforce which pag-
es were relevant and which were not. When users click on a page 
link in the search results, the machine-learning algorithm learns 
that the page is relevant. If users ignore a link that appears at the 
top of the search results, the algorithm infers that the page is not 
relevant. The algorithm combines such feedback from millions 
of users to adjust how it evaluates pages in future searches.

excess Problems
researchers often use reinforcement learning for tasks that re-
quire a sequence of actions, such as playing a game. Consider a 
simple example, like tic-tac-toe. The computer may start by ran-
domly putting an X in a corner. This is a strong move, and the 
computer will go on to win these games more often than the 
games that it opens by placing an X on a side. The action that 
leads to a win—X in the corner—gets reinforced. Researchers 
then extend this process to infer what the correct action would 
be at any future step of the game—and for any game, from 
checkers to Go. Reinforcement learning is also used in advanced 
economics applications, such as finding a Nash equilibrium. 

Sometimes even reinforcement learning is too much to ask 
for, because we are unable to get feedback on our actions. In such 
cases, we must turn to “unsupervised learning.” Here the re-
searcher has a set of data but no information about what action 
should be taken—either explicitly, as in supervised learning, or 
implicitly, as in reinforcement learning. How could we possibly 
learn from these data? A first step to making sense of it is to cate-
gorize the data into groups based on similarity. This is called 
clustering. It collects unlabeled data and infers information 
about their hidden structure. Clustering provides us with a bet-
ter understanding of the data before we consider what action 
should be taken. Sometimes clustering is enough—if we want to 
organize a library, simply grouping books into similar categories 
is all we need to do. At other times, we might go further and ap-
ply supervised learning to the clustered data. 

Ironically, the biggest trap that machine-learning practition-
ers fall into is to throw too much computing power at a prob-
lem. Recognizing this fact and being able to deal with it proper-
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ly are what separate the professionals 
from the amateurs. 

How can more power hurt? Machine-
learning algorithms try to detect patterns 
in the data. If the algorithm is too aggres-
sive—perhaps using too sophisticated a 
model to fit a limited data sample—it may 
mislead itself by detecting spurious pat-
terns that happen by coincidence in a 
sample but do not reflect a true associa-
tion. A significant part of the research on 
the mathematical theory of machine learn-
ing focuses on this problem of “overfit-
ting” the data. We want to detect genuine 
connections that fit the data, but we do 
not want to overdo it and end up picking 
patterns that cannot be trusted.

To understand how this can happen, 
imagine a gambler at a roulette table (for 
the sake of simplicity, we will assume this 
table has only red and black numbers and 
does not include 0 or 00). She watches 10 
consecutive spins alternate between red 
and black. “The wheel must be biased,” 
she thinks. “It always goes red, black, red, 
black, red, black.” The player has created 
a model in her head that the limited data 
set has confirmed. Yet on the 11th roll, 
right after she puts down $100 on red, the 
random nature of the wheel reasserts it-
self. The wheel stops at black for the sec-
ond consecutive time, and she loses it all.

Our gambler was looking for a pattern 
where none really exists. Statistically, any 
roulette table has about a one in 500 chance of randomly flip-
flopping between red and black 10 times in a row. In roulette, 
however, past spins have no bearing on the future. The next spin 
always has a 50 percent chance of coming up red. In machine 
learning, we have an old saying: if you torture the data long 
enough, it will confess.

To avoid this outcome, machine-learning algorithms are biased 
to keep the models as simple as possible using a technique called 
regularization. The more complex a model is, the more prone it is 
to overfitting; regularization keeps that complexity in check. 

Researchers will also commonly validate the algorithm on data 
that are not in the training set. In this way, we ensure that the 
performance we are getting is genuine, not just an artifact of the 
training data. The Netflix prize, for instance, was not judged 
against the original data set provided to the participants. It was 
tested on a new data set known only to the people at Netflix. 

Predicting the Future
it is difficult to get bored if you work in machine learning. You 
never know what application you could be working on next. Ma-
chine learning enables nonexperts in an application area—com-
puter scientists in women’s fashion, for example—to learn and 
predict based merely on data. As a consequence, interest in the 
field is exploding. This past spring students from 15 different 
majors took my machine-learning course at Caltech. For the 

first time, I also posted course materials online and broadcast 
live videos of the lectures; thousands of people from around the 
world watched and completed the assignments. (You can, too: 
see the link below in the More to Explore.)

Machine learning, however, works only for problems that 
have enough data. Anytime I am presented with a possible ma-
chine-learning project, my first question is simple: What data do 
you have? Machine learning does not create information; it gets 
the information from the data. Without enough training data 
that contain proper information, machine learning will not work. 

Yet data for myriad fields are becoming ever more abundant, 
and with them the value of machine learning will continue to 
rise. Trust me on this—predictions are my specialty. 

Rated X (and Y and Z)
What movie should you watch tonight? Personalized recommendation engines help 
millions of people narrow the universe of potential films to fit their unique tastes. These 
services depend on a machine-learning strategy called singular value decomposition, 
which breaks down movies into long lists of attributes and matches these attributes to  
a viewer’s preferences. The technique can be extended to just about any recommendation 
system, from Internet search engines to dating sites. 
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For an interactive look at how movie-recommendation systems work,  
visit ScientificAmerican.com/jul2012/rated-x

turn Movies into data
First a recommendation engine takes 
a huge data set of films and viewer 
ratings. then it uses the collective 
ratings to break down individual 
movies into long lists of attributes.  
the resulting attributes may cor - 
respond to easily identifiable quali - 
ties such as “comedy” or “cult classic,” 
but they may not—the computer 
knows them only as x, Y and Z. 

Match Viewers to Movies
Now recommendation is a simple 
matter of decoding an individual’s 
tastes and matching those tastes to 
the relevant movies. If in the past a 
person has enjoyed comedies with 
animals—or with unnamed mystery 
quality X—the recommendation 
engine will find similar films. 
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