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There is much interest currently in using functional

neuroimaging techniques to understand better the

nature of cognition. One particular practice that has

become common is ‘reverse inference’, by which the

engagement of a particular cognitive process is inferred

from the activation of a particular brain region. Such

inferences are not deductively valid, but can still provide

some information. Using a Bayesian analysis of the

BrainMap neuroimaging database, I characterize the

amount of additional evidence in favor of the engage-

ment of a cognitive process that can be offered by a

reverse inference. Its usefulness is particularly limited by

the selectivity of activation in the region of interest. I

argue that cognitive neuroscientists should be circum-

spect in the use of reverse inference, particularly when

selectivity of the region in question cannot be estab-

lished or is known to be weak.
Introduction

Functional neuroimaging techniques such as functional
magnetic resonance imaging (fMRI) provide a measure of
local brain activity in response to cognitive tasks
undertaken during scanning. These data allow the
cognitive neuroscientist to infer something about the
role of particular brain regions in cognitive function.
However, there is increasing use of neuroimaging data to
make the opposite inference; that is, to infer the
engagement of particular cognitive functions based on
activation in particular brain regions. My goal here is to
analyze this practice, known as ‘reverse inference’, and to
characterize some limitations on the effectiveness of this
strategy. The companion paper in this issue by Henson [1]
discusses a complementary strategy for using neuroima-
ging to distinguish competing cognitive theories.

The goal of cognitive psychology is to understand the
underlying mental architecture that supports cognitive
functions. To this end, cognitive psychologists examine the
effects of task manipulations on behavioral variables, such
as response time or accuracy, and use these data to test
models of cognitive function. However, it is often not
possible to determine on the basis of behavioral variables
alone whether a particular cognitive process is engaged, or
whether a particular theory of cognitive architecture is
correct; for example, there are well-known examples of
theoretical indeterminacy based on behavioral data [2]. If
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neuroimaging were able to provide information regarding
what cognitive processes were engaged in performance of
a particular task, cognitive psychologists would have
gained a powerful new tool. Researchers outside cognitive
psychology are also sometimes interested in using
neuroimaging to determine the engagement of particular
cognitive processes. For example, philosophers might wish
to know the degree to which emotion versus deliberative
reasoning plays a role in moral judgments [3].
Inference in neuroimaging

The usual kind of inference that is drawn from neuroima-
ging data is of the form ‘if cognitive process X is engaged,
then brain area Z is active’. Perusal of the discussion
sections of a few fMRI articles will quickly reveal,
however, an epidemic of reasoning taking the following
form:

(1) In the present study, when task comparison A was
presented, brain area Z was active.

(2) In other studies, when cognitive process X was
putatively engaged, then brain area Z was active.

(3) Thus, the activity of area Z in the present study
demonstrates engagement of cognitive process X by
task comparison A.

This is a ‘reverse inference’, in that it reasons back-
wards from the presence of brain activation to the
engagement of a particular cognitive function.

In many cases the use of reverse inference is informal;
the presence of unexpected activation in a particular region
is explained by reference to other studies that found
activation in the same region. However, in some studies
the reverse inference is a central feature. In one study [4],
subjects were scanned using PET while they performed an
economic exchange task in which they had the chance to
punish those who defected. Activation was observed in the
dorsal striatum when participants subjected defectors to
effective punishment; this activation was inferred to reflect
the rewarding properties of altruistic punishment. Simi-
larly, a study using fMRI in rats [5] compared activity
during pup suckling versus cocaine administration.
Greater activity in the dorsal and ventral striatum during
suckling compared with cocaine administration led the
authors to conclude that ‘pup suckling is more rewarding
than cocaine’ (p. 149). In each of these studies, a cognitive
process (‘reward’) was inferred from activation in a
particular brain system (the striatum). Nearly every
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Box 1. Bayes’ theorem

Bayes’ theorem is a result from probability theory that describes how

to compute conditional probabilities (the probability of one event

given some other event). The theorem is generally stated as:

PðX jZ Þ Z
PðZ jX ÞPðX Þ

PðZ Þ
or PðX jZ Þ Z

PðZ jX ÞPðX Þ

PðZ jX ÞPðX ÞCPðZ jwX ÞPðwX Þ

Let’s say X and Z are two Bernoulli events (i.e. they either happen or

they do not), and that we have some prior belief about the probability of

X. Bayes’ theorem gives us a way to update our belief given additional

evidence, in this case evidence aboutZ. Thequantities in the formula are:

P(XjZ)Zthe conditional probability of event X given event Z, known

as the posterior probability

P(ZjX)Zthe conditional probability of event Z given event X (which

is assumed to be known)

P(X)Zthe probability of event X before any knowledge about

Z was obtained, known as the prior probability (or simply the prior)

P(Z)Zthe probability of Z regardless of X, known as the base rate

of Z

As an example, let X represent the occurrence of rain and Z

represent the occurrence of clouds in the sky. Let’s say that the

prior probability of rain on any day (regardless of the presence of

clouds) is P(X)Z0.2, the base rate of clouds in the sky is P(Z)Z0.3,

and the conditional probability of clouds given the presence of rain

is P(XjZ)Z1.0. With these values, the posterior probability of rain

given the presence of clouds is P(ZjX)Z0.67 according to

Bayes’ theorem.

Additional discussion of Bayes’ theorem can be found at the

Stanford Encyclopedia of Philosophy (http://plato.stanford.edu/

entries/bayes-theorem/) and Wikipedia (http://en.wikipedia.org/wiki/

Bayes_theorem/).
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neuroimaging paper (this authors’ included) uses similar
reverse inferences to explain the occurrence of unpredicted
regions of activation (for an early discussion of reverse
inference, see D’Esposito et al. [6]).

It is crucial to note that this kind of ‘reverse inference’ is
not deductively valid, but rather reflects the logical fallacy
of affirming the consequent [7]. The syllogism could be
made deductively valid if statement (2) were exclusive,
such that area Z was active if and only if cognitive process
X is engaged. However, cognitive neuroscience is generally
interested in a mechanistic understanding of the neural
processes that support cognition rather than the formula-
tion of deductive laws. To this end, reverse inference might
be useful in the discovery of interesting new facts about
the underlying mechanisms. Indeed, philosophers have
argued that this kind of reasoning (termed ‘abductive
inference’ by Pierce [8]), is an essential tool for scientific
discovery [9].

To better understand the information that is provided by
reverse inference, it is useful to restate the inference in
probabilistic terms [10], in which case the relevant
quantities can be determined using Bayes’ theorem (see
Box 1 for more on Bayes’ theorem):
Table 1. Frequency table for BrainMap database search,

showing the number of experimental comparisons identified

for each searcha

Language study Not language study

Activated 166 199

Not activated 703 2154
aLocation of the ROI was [K37,18,18] in Talairach space, extending 10 mm in each

direction.

PðCOGX jACTZÞ

Z
PðACTZjCOGX ÞPðCOGX Þ

PðACTZjCOGX ÞPðCOGX ÞCPðACTZjwCOGX ÞPðwCOGX Þ
where COGX refers to the engagement of cognitive process X
and ACTZ refers to activation in region Z. (It should be noted
that the prior P(COGX) is always conditioned on the
particular task being used, and should more properly be
termed P(COGXjTASKy); however, for the purposes of
simplicity I have omitted this additional conditionalization).
This expression uses an expanded form of Bayes’ rule that
makes clearer the relation to each of the quantities in
Table 1. Viewing the reverse inference problem in this way
highlights the fact that the degree of belief in a reverse
inference depends upon the selectivity of the neural
response (i.e. the ratio of process-specific activation to the
overall likelihood of activation in that area across all tasks)
www.sciencedirect.com
as well as the prior belief in the engagement of cognitive
process X given the task manipulation [P(COGX)]. This can
be seen more clearly when inference is characterized as a
probabilistic graph (see Box 2), in which the propagation of
uncertainty between levels of inference is made explicit.
More generally, this probabilistic approach allows us to
characterize the factors that affect the quality of
reverse inferences.
Estimating selectivity using the BrainMap database

The greatest determinant of the strength of a reverse
inference is the degree to which the region of interest is
selectively activated by the cognitive process of interest. If
a region is activated by a large number of cognitive
processes, then activation in that region provides rela-
tively weak evidence of the engagement of the cognitive
process; conversely, if the region is activated relatively
selectively by the specific process of interest, then one can
infer with substantial confidence that the process is
engaged given activation in the region.

It is unfortunately quite difficult to determine clearly
the selectivity of activation in a particular brain region.
One possible way to estimate selectivity is to use one of the
several databases of imaging results currently accessible
on the Internet. By searching for studies that show
activation in a particular location, one could potentially
formulate an estimate of the selectivity of activation in
that region. To examine this idea, I used the BrainMap
database (http://www.brainmap.org/) [11], which (as of
September 2005) contained data from 3222 experimental
comparisons in 749 published papers. Although this
represents only a portion of the entire neuroimaging
literature, the database provides a broad enough sample
of different studies to provide a useful proof of concept. I
examined the reverse inference that activation in ‘Broca’s
area’ implies engagement of language function. As a seed
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Box 2. Inference as a probabilistic graph

The relationships between experimental manipulations, cognitive

processes and observed variables can be expressed as a probabil-

istic graph (or Bayesian network) (e.g. see [21]) (Figure I). In such a

graph, the nodes represent entities and the edges represent

conditional probabilities. This graph highlights several important

features of reverse inference. First, it makes clear that the cognitive

processes (which are of interest in the reverse inference) are

conditioned on the particular task manipulation, such that the prior

on the cognitive process takes into account the particular task

being performed. Second, it highlights the fact that the strength of

the reverse inference depends upon the degree to which the edge

of interest is substantially stronger than all other edges leading to

the same activation; in the limit, if all other edges have

probabilities of zero, the mapping between cognitive process and

fMRI activation is ‘one-to-one’ [22]. Third, it reminds us that fMRI

data are not alone in suffering from the reverse inference problem:

Reverse inference based on any observable data (e.g. behavioral

data) is limited by the same characteristics.

Box 3. Region size and selectivity

An interesting question regarding selectivity is how the size of the

region being analyzed affects the estimated selectivity of the response.

To examine this, searches were performed with four cubes (of widths

4 mm, 12 mm, 20 mm, and 40 mm) centered on the same point used in

the analysis in Table 1 in the main text. In Figure II, the posterior

probability is plotted against the prior, to demonstrate how the region

size affect selectivity. The distance of this function from the diagonal

expresses the degree to which the reverse inference provides

additional information over the prior, and is proportional to the

Bayes factor. These results show that smaller regions are more

selective than large regions, and thus that the power of reverse

inference can be maximized by using smaller regions of interest.

It is also useful to ask how these region sizes relate to the kinds

of structures that are commonly used in reverse inference. For

example, ‘Broca’s area’ is often equated with the left inferior frontal

gyrus, pars triangularis. In the AAL atlas [23], this region has a

volume of 20104 mm3, which is roughly equivalent in volume to a

28 mm cube. This suggests that selectivity of many common

reverse inferences is likely to be relatively low because of the

size of the region.
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Figure I. A probabilistic graph representing the relationships between experimental manipulations, cognitive processes and observed variables (see text for details).
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Figure II. An illustration of how the size of a region of interest (ROI) affects selectivity of the response. Smaller regions give a higher posterior probability (plotted on the

ordinate), and hence provide more additional information over the prior than larger regions do.
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Figure 1. Behavioral domain taxonomy for cognition, from the BrainMap database

[11]. In addition to this taxonomy, there are additional taxonomies for Action,

Emotion, Interoception, Perception and Pharmacology.
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location, I used a point in the dorsal left inferior frontal
gyrus (approximately Brodmann’s area 44), which was
identified by McDermott et al. [12] as being active during
engagement of both phonological and semantic processing;
a region of interest was created by centering a cube of
20 mm width at this location (for a discussion of the effects
of the size of this region, see Box 3). Two searches were
performed, one for all experimental comparisons relevant
to language processing with activations in this region, and
another for all comparisons that were not relevant to
language processing (as noted by the Behavioral Domain
code in the database) with activation in this region. In
addition, the same searches were performed without the
anatomical specification, to determine the overall fre-
quency of those classes of studies. The results of these
searches are presented in Table 1.

Armed with the results of these searches, one can
compute the posterior probability for the reverse infer-
ence, which maps onto subjective confidence in that
inference. This posterior probability depends both upon
the conditional probabilities expressed in Table 1 as well
as the prior estimate of language processes being engaged
given the particular task. Bayes’ rule can be understood as
a means of updating one’s prior beliefs based on new
evidence; positive evidence increases one’s belief
compared with before, and the degree of this increase
depends upon the selectivity of the evidence. Reverse
inference will generally be used when we want to infer the
presence of a cognitive process that is not directly
manipulated by the task, and in this case the prior on
engagement of the cognitive process will be relatively low,
compared with the case where the process is directly
manipulated by the task. If, for example, the prior is 0.5
(i.e. we are equally confident that the process is either
engaged or not), then the posterior probability on the
inference is 0.69; in other words, activation in the area of
interest increases the odds of engagement of the cognitive
process from even (1/1) to positive (2.3/1).

How should one determine whether this increase is
substantial? One approach is to use the Bayes factor,
which is the ratio of the posterior odds to the prior odds,
where odds are computed as p/(1–p) [13]. Within the
Bayesian inference community, there is a convention
attributed to Jeffreys [14] that a Bayes factor between 1
and 3 represents weak evidence, between 3 and 10 reflects
moderate evidence, and greater than 10 reflects strong
evidence; this is somewhat akin to the convention in
frequentist statistics regarding p!0.05. The Bayes factor
for the reverse inference discussed above is 2.3, meaning
that the inference provides a positive but relatively weak
increase in confidence over the prior.

The need for a cognitive ontology

There are several limitations on the foregoing analysis.
Most importantly, reverse inference is generally intended
to identify the engagement of particular cognitive
processes, but this requires that experiments in the
database be coded with regard to these cognitive
processes. In the language of informatics, this could be
termed the ‘cognitive ontology’ of the database [15].
Unfortunately, the cognitive ontologies of existing
www.sciencedirect.com
databases are quite coarse in comparison with current
theories of cognitive psychology. For example, Figure 1
lists the behavioral domain coding schemes from the
BrainMap database for the domain of Cognition. Likewise,
the cognitive ontologies used in other databases such as
Brede [16] (http://hendrix.imm.dtu.dk/services/jerne/
brede/) and the fMRI Data Center [17] (http://fmridc.org)
are similarly coarse. Given that these coarse categories
are unlikely to map the organization of the mind very
cleanly, it seems that powerful reverse inference awaits
the development of a detailed cognitive ontology, which
will probably require the work of a consortium of cognitive
scientists akin to the Gene Ontology consortium (http://
www.geneontology.org) that has developed ontologies for
genome informatics [18].

Improving reverse inferences

There are two ways in which to improve confidence in
reverse inferences: increase the selectivity of response in
the brain region of interest, or increase the prior
probability of the cognitive process in question. Selectivity
is outside the control of the experimenter, but the analysis
above suggests that an estimate of selectivity can at least
be obtained. In addition, the analysis of sets of regions
(functioning as connected networks) might provide
greater selectivity than the analysis of single regions, to
the degree that specific processes engage specific networks
[19]. The size of the region of interest will also affect
selectivity (see Box 3), suggesting that reverse inference to
smaller regions will provide more confidence.

The prior is to some degree under the control of the
experimenter, as he/she can often choose experimental
tasks that maximize the prior probability of a particular
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Box 4. Questions for future research

† How do brain regions differ in their selectivity?

† Are networks more selective than individual regions?

† Can cognitive psychology support a detailed formal ontology of

cognitive proceses?

† How are selectivity estimates from neuroimaging databases

biased by selection biases on database entries?
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process being engaged. This strategy is more applicable to
studies that are directed at making a specific reverse
inference, rather than for studies where reverse inference
reflects a post hoc explanation for a particular result [20].
One way to increase the prior is by using converging
behavioral evidence to provide stronger evidence of
engagement of the process of interest. For example,
Greene et al. scanned subjects using fMRI while they
entertained either personal or impersonal moral dilem-
mas, which were proposed by the authors to differ in the
degree to which they engaged emotion in the subjects.
Differences in the engagement of several brain regions
(medial prefrontal, posterior cingulate, and angular
gyrus) were used to infer ‘systematic variations in the
engagement of emotion in moral judgment’ ([3], p. 2107).
In parallel to these fMRI results, the investigators also
examined response times for trials on which subjects
responded that the behavior in question in the dilemma
(e.g. pushing a person off a bridge to save several other
people) was either appropriate or inappropriate. They
found that response times for personal dilemmas were
longer when the subjects responded ‘appropriate’ than
when they responded ‘inappropriate’, whereas the opp-
osite pattern was observed for impersonal dilemmas. They
argued that this behavioral effect reflected emotional
conflict for the personal but not the impersonal dilemmas,
and thus provided converging evidence for the reverse
inference. To the degree that such claims regarding the
behavioral data are plausible, such a combination of
behavioral and fMRI results provides stronger evidence in
favor of a reverse inference.
Conclusions

There is substantial excitement about the ability of
functional neuroimaging to help researchers to discover
the organization of cognitive functions. The analysis
presented here suggests that caution should be exercised
in the use of reverse inference, particularly in cases where
the prior belief in the engagement of a cognitive process
and selectivity of activation in the region of interest are
low. The results also suggest that mining of neuroimaging
databases can provide additional insight into the strength
of specific inferences from neuroimaging data, but that the
usefulness of these databases is limited by the coarseness
of the underlying cognitive ontology used in current
databases (see also Box 4). In my opinion, reverse
inference should be viewed as another tool (albeit an
imperfect one) with which to advance our understanding
of the mind and brain. In particular, reverse inferences
can suggest novel hypotheses that can then be tested in
subsequent experiments. The analysis presented here
suggests that this might well be true, but the ultimate
www.sciencedirect.com
usefulness of the reverse inference strategy will be
determined by its success in advancing our understanding
of the mind and brain in the future.
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