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ABSTRACT: Recent years have seen a strong growth of interest in
multivariate approaches for analysing brain activity patterns. The pri-
mary goal of these approaches is to reveal the information repre-
sented in neuronal population codes. Here, we review how these
methods have been used to relate neural activity patterns both to
stimulus input and to behavioural output and how they might help to
explain individual differences in behavioural performance. We exam-
ine the neuroscientific interpretation of different types of pattern-infor-
mation analysis and highlight current challenges and promising future
directions for this emerging field. The open challenges that we dis-
cuss are as follows: inferring the causal role of pattern information,
seeking diagnostic power for functional Magnetic Resonance Imag-
ing (fMRI) at the level of individuals, determining whether observed
patterns have real functional significance, finding the structure under-
lying high-dimensional activation spaces and relating one person’s
neural patterns to another’s. VVC 2010 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 20, 31–41, 2010; Published online in Wiley InterScience (www.

interscience.wiley.com). DOI 10.1002/ima.20225
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I. INTRODUCTION: BRAIN REPRESENTATIONS
ARE INHERENTLY MULTIVARIATE

Nothing is more multivariate than the brain. Populations of neurons,

densely interconnected at both short-distance and long-distance

scales, work in concert to process richly structured information.

From this perspective, it may seem odd that the dominant

approaches for analysing the brain have been univariate in nature.

However, simple models have many virtues: they are directly testa-

ble, easily interpretable and computationally tractable. Although

they only reveal a part of the picture, that which they do reveal can

be useful and important. For example, in neurophysiology, informa-

tion about a great many stimuli and tasks has been found in the

responses of single neurons (Parker and Newsome, 1998).

Functional neuroimaging may not at first sight appear to have

taken a univariate approach. After all, a whole volume of voxels is

acquired at once, and a General Linear Model (or GLM) is used to
statistically analyse all of these voxels. However, each voxel is ana-
lysed individually: the model relates the experimental design to the
time-course from that voxel alone. For this reason, such analyses
can be described as ‘massively univariate’ (Luo and Nichols, 2003).
Note that the term ‘univariate’ here refers to the fact that such anal-
yses model each dependent variable (i.e., each voxel) individually.
Multiple predictor variables may still be used to model different
aspects of the experimental design (hence, the term ‘multiple linear
regression’).

In classical brain mapping analyses, the data are typically spa-
tially smoothed so as to focus sensitivity on overall activations of
functional regions. As a consequence, population-code information
reflected in subtle differences between nearby voxels may be lost,
as is schematically illustrated in Figure 1A (but see Op de Beeck
(2010) and the recent debate in NeuroImage: Gardner (2010);
Kamitani and Sawahata (2010); Kriegeskorte et al. (2010); Shmuel
et al. (2010)). Importantly, univariate statistical models do not
encode relationships between voxels. Instead, each voxel’s activa-
tion value is modeled separately, so as to detect brain regions that
respond more strongly during one experimental condition than dur-
ing another.

In a multivariate analysis, multiple responses are jointly tested

for differences between experimental conditions. In fMRI, the

responses are from a collection of voxels, with the number of voxels

ranging over anything from a handful to tens of thousands. In neu-

rophysiological studies, the responses are from a collection of elec-

trode measurements of single-neuron or multi-unit activity,

recorded in animals (Hung et al., 2005; Kiani et al., 2007; Meyers

et al., 2008; Mesgarani et al., 2008) or even in humans (Quiroga

et al., 2007; Liu et al., 2009). The common factor linking all of

these studies is that by jointly analysing multiple neural responses

at once they try to probe the brain’s distributed population codes.

This approach opens up new questions and ways of thinking about

neural representations which are difficult or even impossible to for-

mulate from a traditional univariate point of view. In the present

review, we highlight some of these novel questions and the insights

that they have yielded, and we discuss some of the difficult but

exciting challenges which face this new area of research.
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II. RECENT DEVELOPMENTS IN THE LITERATURE,
AND THE AIMS OF THIS REVIEW

Population analyses have a long history in electrophysiology (e.g.,

Georgopoulos et al., 1986). In functional imaging as well, multivariate

analyses have been explored early on (e.g., Worsley et al., 1997). How-

ever, the current dynamic started with Haxby et al. (2001), who used

pattern-information analyses to investigate the object-category infor-

mation contained in multivoxel fMRI activation patterns in the human

ventral-stream. Following this seminal paper, interest in this area has

grown rapidly. Figure 2 shows the growth of citation counts for some

key fMRI pattern-information papers. A number of papers using this

new approach have been published in high-profile journals, including

Nature (Kay et al., 2008; Peelen et al., 2009), Science (Haxby et al.,

2001; Polyn et al., 2005; Mitchell et al., 2008; Formisano et al., 2008;

Li et al., 2008; Knops et al., 2009; Schurger et al., 2010) and Nature

Neuroscience (Haynes and Rees, 2005; Kamitani and Tong, 2005;

Williams et al., 2007; Soon et al., 2008; Howard et al., 2009).

In response to this growing interest, several review articles have

appeared. Conceptual reviews on multivariate ‘decoding’ or ‘mind

reading’ can be found in Norman et al. (2006), Haynes and Rees

(2006) and O’Toole et al. (2007). The synergies between pattern-

information analysis and high-resolution fMRI have been explored

in Kriegeskorte and Bandettini (2007). A gentle methodological tu-

torial is provided by Mur et al. (2009). More technical aspects of

the machine-learning algorithms which are used to analyse such

Figure 1. Schematic illustration of how conventional fMRI analysis (A) is unable to distinguish between activation arising from distinct neural
representations within the same brain area. In contrast, pattern-information fMRI (Kriegeskorte et al., 2006) is able to distinguish between such
representations by examining spatial fMRI patterns, as opposed to computing statistics for each voxel considered individually (B). This poten-
tially opens up many new questions that were previously inaccessible to fMRI. One such question is whether these distributed fMRI patterns can
be related to people’s behavioural performance. An example, from Raizada et al. (2010), is illustrated at the right-hand end of panel B: the hy-
pothesis was that if the fMRI patterns elicited by /ra/ and /la/ stimuli were separable from each other, then the listener would be able perceptually
to tell /ra/ and /la/ apart. Conversely, if the patterns were too intermingled to be statistically separable, then /ra/ and /la/ would not be discrimina-
ble by the listener. Raizada et al. (2009a) tested this hypothesis in native English speakers and Japanese speakers, and they found that neural
pattern separability did indeed correlate with behavioural performance, not only across groups but also across individuals. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 2. Pattern-information fMRI is a rapidly growing field. This
graph shows the citation counts of some key papers (Haxby et al., 2001;
Carlson et al., 2003; Cox and Savoy, 2003; Haynes and Rees, 2005;
Kamitani and Tong, 2005; Kay et al., 2008; Kriegeskorte et al., 2006;
Mitchell et al., 2008), using data from ISI Web of Knowledge, as of mid-
November 2009. Values for the full year 2009 are projected from the
data up to mid-November, by multiplying that value by 12/10.5. Note
that the y-axis shows the number of citations in each calendar year, not
the cumulative total number of citations. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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data are reviewed for fMRI in Pereira et al. (2009), and for Electro-

encephalography (EEG) in Lotte et al. (2007) and Muller et al.

(2008). A review of clinical and pediatric applications of pattern-in-

formation analyses can be found in Bray et al. (2009), and an over-

view of the potential of fMRI for implementing brain–computer

interfaces (BCIs) is given by Sitaram et al. (2009).

The present review does not seek to duplicate those efforts.

Instead, we wish to describe what we believe to be some of the

most promising new research directions, important under-explored

issues, and key future challenges which face the field. We will high-

light two topics in particular: the neuroscientific interpretation of

pattern-information results, and how the approach is moving

beyond looking only at brain activity patterns by seeking to relate

them to individual differences in perception and behaviour.

III. ACTIVATION VS. PATTERN INFORMATION

Classical activation analysis aims to reveal a region’s ‘involvement’

in some cognitive function. Pattern-information analysis, by con-

trast, aims to look into each region and reveal its ‘representational

content’ by testing for combinatorial effects (Hanson et al., 2004),

as is illustrated in Figure 3. Consider the fMRI activation of a single

voxel. When different experimental conditions come and go, this

voxel may become either more or less active, and we can calculate

the activation difference between the various states along this one-

dimensional (1D) continuum. However, consider the joint state of the

activity of two voxels. Different experimental conditions now corre-

spond to positions in a 2D activation space. This space has a far richer

structure: a great many different states are possible, and they can be

similar to each other, i.e., bunched together in the space, or dissimilar,

i.e., dispersed far apart. Multivariate analysis typically deals with

much higher dimensional spaces (i.e., greater numbers of response

variables). The multivariate approach is sensitive to the combinatorial

effects that lend a neuronal population code its representational

power. Population codes can thus be quantitatively investigated and

related to those most richly structured sets of phenomena: perceptual

and cognitive content, and behaviour.

By using fMRI to look for information rather than activation,

new types of questions can be formulated and addressed. Pattern-in-

formation analysis is sensitive to subtle distributed effects.

However, it would be a mistake to view multivoxel analyses as sim-

ply asking the same questions as standard massively univariate

analyses but with greater sensitivity. Pattern-information analyses

allows us to ask different questions of the data. One example is that

they allow the study of spatially overlapping neural representations,

in a way which standard univariate analyses do not. Standard analy-

ses smooth away the distinctions between distinct patterns of fMRI

activation which are colocalised in the same region, as illustrated in

Figure 1A, with the result that they will be blind to any pattern dif-

ferences which do not also happen to correspond to differences in

average local activation intensity. Many pattern-information fMRI

studies have investigated overlapping representations of precisely

this sort, starting with Haxby et al. (2001). Examples include distin-

guishing between feature-based attentional signals which both

spread globally across the visual field but which are directed to dif-

ferent motion orientations (Serences and Boynton, 2007), different

phonemes whose representations overlap in auditory cortex (Formi-

sano et al., 2008; Raizada et al., 2009a), spatially overlapping proc-

essing of different aspects of visual form object categories (Hanson

et al., 2004; Downing et al., 2007; Peelen and Downing, 2007; Krie-

geskorte et al., 2008a) and of faces (Kriegeskorte et al., 2007) and

the representations of different odours all co-localised within poste-

rior piriform cortex (Howard et al., 2009).

However, a greater advantage that arises from investigating mul-

tivariate population codes is that it opens up a rich new way of

thinking about neural representations: we can consider them in

terms of the structure of similarity space. We look at some specific

examples of this in the next section.

IV. MULTIVARIATE APPROACHES OPEN UP NEW
QUESTIONS: THE STRUCTURE OF SIMILARITY SPACE

Univariate measures, which look at just a single voxel or a single

neuron at a time, can only go up or down. However, multivariate

measures correspond to positions in a multidimensional activation

space, which has a far richer structure. This allows new questions to

be asked: for example, how do the representational similarity struc-

tures of human and macaque inferior temporal cortex compare to

each other? A recent study (Kriegeskorte et al., 2008a) found that

the similarity structures from human and monkey are remarkably

alike. This could be demonstrated at the level of pattern-similarity

structure despite the fact that humans were measured with fMRI

and macaques with invasive cell recording. Two visualisations of

the similarity space found in monkeys are shown in Figure 4 (Kiani

et al., 2007). Univariate analysis has the advantage of simplicity.

However, multivariate approaches are needed to relate neural activ-

ity patterns to complex mental representations. Cognitive psychol-

ogy has a rich tradition of using similarity to investigate the struc-

ture of mental representations across multiple perceptual, linguistic

and semantic domains (Tversky, 1977; Shepard, 1987; Nosofsky,

1988; Medin, 1989; Edelman, 1998). Moreover, psychologists

developed the tool of multidimensional scaling to project complex

high-dimensional similarity spaces onto a more visualisable lower

dimensional representation (Shepard, 1962; Kruskal, 1964) and also

methods for combining similarity spaces across multiple subjects

(e.g., INDSCAL: Carroll and Chang, 1970). Functional MRI inves-

tigations of similarity space can build on the insights from that

body of work. Comparing representational dissimilarity matrices

from different sources provides a general framework (Kriegeskorte

et al., 2008b) for relating not only species and measurement

Figure 3. Looking into brain regions to reveal representational con-
tent. The neuroscientific rationale for pattern-information analysis is
to infer a brain region’s ‘representational content’ from the presence
of information (about stimuli or responses) in the activity patterns.
This is in contrast to the classical brain-mapping paradigm, whose
neuroscientific rationale is to infer a region’s ‘involvement’ in some
cognitive function from its (spatially averaged) overall level of activa-
tion. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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modalities but also to brain representations to behaviour and to

computational models.

V. ‘PREDICTION’, ‘DECODING’, INFERENTIAL
STATISTICS AND CLASSIFIERS

A popular basic variant of pattern-information analysis is response

pattern classification. In this approach, the experimental conditions

(e.g., the stimuli) are ‘predicted’ from the activity patterns they

elicit. We put ‘prediction’ in quotes here, because it does not refer to

the prediction of future events or of subsequent brain-function dy-

namics. We can interpret the term in the context of an imaginary

game of ‘Give me the response patterns, and I will tell you the stim-

uli’. This paradigm is also referred to as ‘decoding’ (Mitchell et al.,

2004; Haynes and Rees, 2006; Friston et al., 2008). The rationale for

this approach is that if ‘prediction’ works better than chance, then

there must be information about the stimuli in the response patterns.

The sense in which a classifier performs prediction is that it can

be used to make inferences beyond the data that is presented to it,

in other words it generalises from a training set to a testing set.

However, such generalisation is not unique to classifiers: the whole

purpose of standard inferential statistics is to reason from a sample

to the broader population from which that sample is drawn. Classi-

fiers are often used for handling multivariate data, but standard tools

from inferential statistics can also be multivariate: examples include

multivariate analysis of covariance (MANCOVA), Hotelling’s T2

and Wilks’ k (Rencher, 2002). Such methods, in principle, can offer

elegant and computationally inexpensive ways to model data. How-

ever, they rely on distributional assumptions (i.e., multivariate nor-

mality), which may not always hold. Nonparametric multivariate

methods (e.g., Racine and Li, 2004) do not require such assump-

tions, but they typically involve computationally intensive permuta-

tion operations, not unlike the computation required when using

classifiers with cross-validation. In summary, although the term

‘prediction’ is often used when classifiers analyse fMRI data, the

underlying logic of trying to reason beyond a given data sample to

a broader population is no different from that underlying standard

GLM analyses. The key difference is that pattern-information anal-

yses consider information distributed across multiple voxels,

whereas standard GLM analyses consider each voxel on its own.

It should be noted that there do exist pattern-information studies

which use the word ‘predict’ in its valid and literal sense, by mak-

ing inferences about the subjects’ future states and following up

and testing those predictions in a longitudinal study. These have

typically been studies attempting to predict the progression of disor-

ders, such as Alzheimer’s (Fan et al., 2008a), depression (Costa-

freda et al., 2009) and psychosis (Koutsouleris et al., 2009).

Buzz words like ‘prediction’, ‘decoding’ and ‘brain reading’

make pattern-information results attractive to a broad audience

including the general public and the media. However, these terms

should not be taken to imply that what is demonstrated goes beyond

a statistical dependency between stimulus and response. The ability

to ‘predict’ and ‘decode’ could equally be claimed on the basis of

any classical activation analysis, such as Kanwisher et al. (1997).

Consider the following potential title claims:

! ‘Fusiform cortex responds more strongly to faces than to other

objects’

! ‘Fusiform activity predicts the perception of faces’

! ‘Face percepts can be decoded from fusiform activity’

The fact that face stimuli are correlated with stronger activation

in the fusiform gyrus would justify each of these titles. The words

‘predict’ and ‘decode’ in the second and third title do not have any

deeper implications about fusiform cortex than the activity differ-

ence claimed in the first title.

Whether we are ‘predicting’ the stimulus from the response or

the response from the stimulus, all that is demonstrated is a statisti-

cal dependency (or, equivalently, mutual information) between the

two. In a univariate scenario, it is easy to see that a correlation

between two variables implies predictability in both directions. In

the multivariate scenario, the same holds. Demonstrating above-

chance predictability in either direction implies a statistical depend-

ency and thus above-chance predictability in both directions. The

direction in which the model operates has no implications for the

neuroscientific interpretation of the result. What is novel about pat-

tern-information analysis is not ‘prediction’ or ‘decoding’ but the

joint analysis of multiple responses as a population code. This does

have neuroscientific implications distinct from those of traditional

univariate analyses.

Figure 4. Kiani et al. (2007) investigated the similarity space of responses across more than 600 neurons in monkey inferotemporal cortex to a
set of visual object stimuli. Different aspects of resulting similarity space can be visualised using (A) a cluster diagram and (B) multidimensional
scaling. Reproduced with permission from Kiani et al. (2007). [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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VI. BEYOND STIMULUS REPRESENTATIONS: RELATING
PATTERN INFORMATION TO BEHAVIOUR

Most pattern-information studies have focused on the relationship

between stimuli and the neural response patterns that they elicit.

However, a larger goal is to understand how the brain gives rise to

behaviour. Instead of relating the observed activity patterns to the

stimuli that elicited them, we can relate them to subjects’ behaviou-

ral responses. Furthermore, we can study the extent to which brain

representations of stimuli and behavioural responses vary with sub-

ject traits (e.g., personality measures or group memberships, as

illustrated in Figure 6).

Along these lines, one might hypothesize that visual objects

whose inferior temporal representations are similar give rise to sim-

ilar behavioural responses. In a study of monkeys viewing visual

objects, Op de Beeck et al. (2001) compared behavioural and neural

population code similarity measures and found them to be some-

what congruent. In human fMRI studies, a number of recent studies

have directly compared and found positive correlations between

behavioural judgments of similarity and multivoxel fMRI pattern

similarity in ventral temporal cortex (Op de Beeck et al., 2008;

Walther et al., 2009; Weber et al., 2009), including changes in pat-

tern-similarity following learning by the subjects (Op de Beeck

et al., 2006; Li et al., 2008). Learning-related changes can also

affect similarity judgments indirectly, by inducing changes in neu-

ral and behavioural discrimination criteria (Li et al., 2009).

Similarity judgment is only one form of behavioural response.

More generally, we can ask whether distributed fMRI patterns can

be related to success and failure in many other types of behaviour

and whether a given set of neural representations is well-structured

or poorly structured for performing a particular task.

Figure 5A shows a cartoon example, namely that of using the

stimulus dimensions of height and weight to separate sumo wres-

tlers from basketball players. Two points are worth noting. First, no

individual dimension on its own is sufficient to separate one cate-

gory from the other. It is necessary to take both height and weight

into account, as evidenced by the fact that the dividing class bound-

ary is diagonal, rather than vertical or horizontal. In the case of

fMRI, the activity of one voxel plays the role of a dimension: stand-

ard voxel-by-voxel analysis uses only one voxel’s activation at a

time, whereas a multivoxel-pattern-based analysis jointly uses in-

formation from many voxels at once.

The second point of note is that for performing the task of dis-

criminating between sumo wrestlers and basketball players, this

height/weight representation is an excellent one. Armed with such a

representational structure, a person would be able to carry out this

task very successfully.

However, a representational structure can also be less suitable

for performing a task. In Figure 5B, the same dimensions of height

and weight are now used in an attempt to separate faculty from stu-

dents. Clearly this representation will only permit poor task per-

formance: the two categories are strongly overlapping in height/

weight space, and are much less separable.

Moving from that cartoon example to a real study with data link-

ing fMRI activation to behavioural ability, Raizada et al. (2010)

tested the hypothesis that the more separable the neural patterns eli-

cited by /ra/ and /la/ are in a person’s brain, the better that person

should be behaviourally at hearing the difference between those

phonemes. Thus, in native English speakers the neural patterns

should be highly separable, but in Japanese speakers the patterns

should be less separable, correspondingly the fact that Japanese

speakers are less able to perceive that phonetic contrast. This hy-

pothesis is schematically illustrated in Figures 5C and 5D, and was

found to hold true in the actual data. Moreover, the neural pattern-

separability correlated not only with group-differences (English vs.

Japanese) but also with individual differences in perceptual discrim-

ination ability. The more separable a person’s neural representa-

tions for /ra/ and /la/ were, the better they were at hearing the differ-

ence between the two sounds.

Figure 5. Cartoon examples showing a representational structure
which will allow very good performance of one task (A) but only poor
performance of a different task (B). Raizada et al. (2010) found fMRI
evidence that analogous representational structures may explain why
the task of discriminating /ra/ from /la/ is easy for English speakers,
but is difficult for Japanese speakers. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

Figure 6. Representational relationships that can be investigated
with pattern-information analyses. Most pattern-information studies
to date have investigated the representation of experimental stimuli in
neuronal population codes (a). Emerging and future applications
include (b) relating population codes to behavioural variables (e.g.,
Op de Beeck et al., 2008; Raizada et al., 2009a), (c) relating popula-
tion codes between two different brain regions (e.g., ‘representational
connectivity’, Kriegeskorte et al., 2008a) and (d) relating the popula-
tion codes in corresponding brain regions between different subjects
(e.g., ‘intersubject information’, Kriegeskorte et al., 2006). Moreover,
we can study how these multivariate relationships depend on interin-
dividual differences (e.g., subject traits, group memberships, disease
variables). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Note that this type of brain–behaviour relationship is quite dif-

ferent from the type of correlation that has often been found in

standard fMRI analysis, in which increasing levels of neural activity

in a given brain area correlate with better behavioural performance

in the task that the region subserves. This type of result has been

found across multiple domains: for example, more intense neural

activity can predict better language ability (Demb et al., 1997; Crin-

ion and Price, 2005). In Raizada et al. (2010), the average intensity

of fMRI activation was the same for /ra/ as it was for /la/. It was the

distinctness of the spatial patterns of activation elicited by those

sounds which made the difference.

VII. CHALLENGES FACING THE FIELD OF
PATTERN-INFORMATION FMRI

A. Inferring the causal role of pattern information. If the

stimuli in an experiment are under our control, then by making

changes to the stimuli (e.g., turning them on and off) and observing

consistent changes in fMRI responses, we can infer that the stimuli

were causally involved in triggering the responses. To be able to

infer a causal role of the brain activity patterns (e.g., ‘the population

code in region X forms the basis of perceptual decision Y’), we

would similarly require experimental control of the brain activity.

Transcranial magnetic stimulation (TMS) allows us to experimen-

tally influence brain activity in humans. However, TMS has low

spatial precision and its effects are akin to a temporary brain lesion.

It does not presently allow us to impose arbitrary precise patterns of

activity. Alternatively, we can rely on assumptions to constrain the

causal relationships to be considered, and then use techniques for

modeling directed interactions between brain regions (also known

as ‘effective connectivity’). For example, Granger causality (Roe-

broeck et al., 2005; Ramsey et al., 2009) exploits the temporal lag

between cause and effect to infer causality (relying on the assump-

tion that the model does not omit relevant alternative causal path-

ways). As another example, dynamic causal modeling (Friston

et al., 2003) allows us to test and compare prespecified causal mod-

els of interactions between brain regions. In neuroimaging, how-

ever, these models of directed interactions are typically based on

univariate activation time courses (fluctuations of spatially averaged

overall activation of the analysed brain regions). The development

of a pattern-information approach to modeling directed interactions

is an important future direction. A pattern-information equivalent to

undirected interactions (i.e., ‘functional connectivity’: correlated

fluctuations of overall activation between two brain regions) is pro-

vided by ‘representational connectivity’ (Kriegeskorte et al.,

2008a). A causal role of activity-pattern information, thus, is diffi-

cult to infer with present empirical and analysis techniques. How-

ever, we will see in the following parts of the paper that relating ac-

tivity patterns to behavioural variables in a (multivariate) correla-

tional framework already provides important constraints for brain

theory.

B. Towards fMRI having diagnostic power at the level of
individuals. Although fMRI has been able to reveal many impor-

tant links between brain and behaviour, almost all of these results

hold at the level of groups, not of individuals. Even when brain–

behaviour correlations are found to hold across individuals, such as

in Raizada et al. (2010), there is almost always a prior step in which

the individual-differences analysis is preceded by, and depends

upon, an analysis at the group level. In the group-level analysis,

potential regions of interest (ROIs) are identified on the basis of

whether they show experimental effects. The individual difference

results are then based upon these group-level-derived ROIs, but this

two-stage analysis process can potentially lead to problems of

selection-bias (Kriegeskorte et al., 2009; Vul et al., 2009). Even in

studies which omit the preceding group-level step by using pre-

defined ROIs, those ROIs will typically have been chosen on the ba-

sis of previously published group-level studies.

The most direct way to avoid needing to select an ROI is to ana-

lyse the whole brain at once, as a single brain-wide multivoxel

pattern. This approach has been extensively pursued in studies of

anatomical differences between patient groups and controls. For

example, Davatzikos and colleagues have investigated whole-brain

multivoxel pattern differences in schizophrenia (Davatzikos et al.,

2005; Khurd et al., 2007; Fan et al., 2008c) and in Alzheimer’s

(Davatzikos et al., 2008; Fan et al., 2008a,b; Misra et al., 2009).

Other groups have also investigated multivoxel anatomical differen-

ces in several disorders, including depression (Costafreda et al.,

2009), fragile X syndrome (Hoeft et al., 2008) and psychosis (Sun

et al., 2009). A review of the application of such approaches to Alz-

heimer’s can be found in Klöppel (2009).

Brain-wide functional MRI patterns, in addition to the structural

MRI studies described above, can also be used to distinguish

between patient and control groups, for example, in schizophrenia

(Demirci et al. 2008a,b). An experiment of this sort in normal sub-

jects, but with potentially direct clinical applicability, is the study

of pain perception by Marquand et al. (2010).

Perhaps, the most direct application to individual differences of

studying brain-wide multivoxel patterns is to relate these patterns to

people’s different levels of ability to perform a given task. Although

the study by Raizada et al. (2010) found a relation across individu-

als between fMRI pattern-separability and levels of task perform-

ance, it used an ROI that needed first to be derived at the group

level. However, in follow-up work, Raizada et al. (2009b) found

that the same brain–behaviour correlation held true even when no

ROI was used, with pattern-separability assessed using just one

brain-wide multivoxel classification in each subject (note that in all

such whole-brain studies, the use of cross-validation makes the

number of actual computations performed per subject be more than

one. The key point is that only a single brain-wide set of voxels is

used for each subject). Increased brain-wide pattern separability

was found to correlate with improved behavioural performance in

two different tasks, from two different datasets: the /ra/–/la/ task

examined in Raizada et al. (2010) and a numerical distance-effect

task from Holloway et al. (2010).

Probably the biggest potential advantage of a brain-wide

approach is in the domain of diagnosis. When scanning an individ-

ual subject, the goal is to be able to make inferences immediately,

without needing first to derive a group-level ROI which will tell us

where in the brain to look. The numerous studies cited above show-

ing whole-brain multivoxel pattern differences between patients

and controls shows that this approach can be successful at the group

level; the study showing correlations with people’s levels of behav-

ioural performance suggests that it may also hold promise at the

level of individuals.

C. How do we know that pattern information is
functionally significant? Finding that the activity pattern in a

brain region reflects some stimulus variable means that the brain

region contains information about that stimulus variable However,

it does not strictly imply that this information serves the function of
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representing the stimulus variable in the context of the brain’s over-

all operation.

Although we have seen that a causal role of pattern information

is hard to pin down, additional evidence can come from correla-

tions with other brain regions and with behaviour. If fMRI pattern-

differences are found to correlate with behavioural differences,

then that supports the claim that the pattern differences genuinely

reflect processes that are functionally significant for the brain.

However, behaviour is not the only such source of potential

corroboration.

One method via which pattern-information analyses try to make

sure that they discover real aspects of brain processing, as opposed

to the idiosyncrasies of a particular data set, is cross-validation: fit-

ting a model to a training set and evaluating it on a testing set. How-

ever, cross-validation need not be the only approach. BCI systems

aim to transform neural signals into the output movements of an ac-

tuator such as a robot arm in the real physical world. In that sense,

they use reality as their testing set: if the robot arm moves to the

wrong place, then the classifier has failed.

Because of its bulky and immobile nature, fMRI has not been as

widely used for BCI as the much more lightweight and portable

arrangement of EEG, although there has been some work (Ganesh

et al., 2008; Lee et al., 2009; Sitaram et al., 2009). Perhaps, the

most promising line of fMRI investigation in this area does not

involve the more usual BCI goal of controlling a motor actuator,

but instead ‘closes the loop’ by giving subjects visual feedback

about their own levels brain activation, which they can then try to

control in real time. This approach may be useful for helping people

to self-regulate pain (deCharms, 2008), emotion (Johnston et al.,

2010) and even cognitive processes such as language (Rota et al.,

2009). The fMRI signals being regulated through neuro-feedback

need not only be univariate activations which become more or less

intense but can also be multivoxel spatial patterns which become

more or less dissimilar (LaConte et al., 2007). This promises to be

an exciting but challenging area for future work and could poten-

tially have fruitful cross-fertilisation with principles of multi-neuro-

nal coding derived from neurophysiological BCI studies in animals

(Nicolelis and Lebedev, 2009).

D. Finding structure underlying high-dimensional neural
representations. Pattern-information analysis deals with very

high-dimensional spaces, as a single fMRI volume of the brain

typically contains tens of thousands of voxels. This poses particu-

lar a challenge to analysis known as the ‘curse of dimensional-

ity’: as the number of dimensions increases, the size of the space

grows exponentially. When trying to find statistical structure in a

high-dimensional space, one often runs into what is called ‘the

small sample size problem’, in which there are more dimensions

than there are data points (Raudys and Jain, 1991). For example,

in fMRI we may have only a few hundred data points (the num-

ber of TRs), but tens of thousands of dimensions (the number of

voxels). In such a space, nondegenerate classes will always be

linearly separable (Cover, 1965). A classifier can then trivially

obtain 100% correct on any training set, without it necessarily

having captured any aspect of the underlying structure of the

data. Training-set performance therefore tells us very little about

how well the classifier will perform on a test set. Other fields in

which this situation also commonly arises are genetics, in which

we may have thousands of genes from only a few dozen patients

(Li et al., 2004), face-recognition, in which a few hundred face

images each contain tens of thousands of pixels (Howland et al.,

2006), and chemometrics, in which spectroscopy can yield thou-

sands of measurements per sample (Frank and Friedman, 1993).

This problem is usually tackled by some combination of dimen-

sion-reduction and regularisation to constrain the space of solu-

tions (for an overview, see the Chapter 18 of Hastie et al., 2009),

and, crucially, by cross-validation for assessing decoding per-

formance (and, thus, the presence of pattern information).

In many cases, it is reasonable to suspect that there may be a

lower dimensional structure lying hidden inside the much higher

dimensional space. Methods have been devised for trying to find

low-dimensional manifold embeddings of this sort (Tenenbaum

et al., 2000; Belkin and Niyogi, 2003; Saul et al., 2006). How-

ever, such methods can be difficult to use when the data is

sparse and noisy (Balasubramanian and Schwartz, 2002), as is

the case for fMRI. The best indication that a real structure has

been found underlying high-dimensional fMRI data is when that

structure can be used to interpolate and predict fMRI activation

for novel stimuli which were not in the original training set. The

studies which have achieved this to date have incorporated do-

main-specific knowledge into their models (Kay et al., 2008;

Brouwer and Heeger, 2009; Mitchell et al., 2008), rather than

deriving their structure automatically using a manifold-embed-

ding approach.

If the aim of cognitive neuroscience is to elucidate the underly-

ing principles of neural activation, not just to ‘decode’ that activa-

tion by assigning labels to brain states, then finding the deeper

structures hidden in high-dimensional multivoxel spaces is likely to

be an important challenge in the years ahead.

E. Relating one person’s neural patterns to another’s. One

type of structure which may lie hidden in high-dimensional multi-

voxel spaces is a possible mapping between one person’s fine-

grained neural activation patterns and another’s. Just as all healthy

human brains share common large-scale anatomical features, such

as the central sulcus and the sylvian fissure, they also have a shared

coarse-grained functional topography, with functionally defined

areas such as the Fusiform Face Area being present in all subjects

in a roughly similar location. However, the fine-grained functional

patterns (just like the finer shapes and folds of gyri and sulci) are

likely to be subject-unique. A classifier trained on one person’s

fine-grained spatial patterns will therefore not in general perform

well on the fine-grained patterns in someone else’s brain. This

raises the challenge of whether it might be possible to find a more

subtle indirect mapping between one person’s fine-grained fMRI

patterns and another’s.

A number of studies have found across-subject commonalities in

distributed spatial patterns at a large or coarse-grained scale, using

‘leave-one-subject-out cross-validation’, in which a classifier is

trained on all but one of the subjects, and tested on the remaining

one. Mourão-Miranda et al. (2005), using two tasks, and Poldrack

et al. (2009), using multiple tasks drawn from several studies,

were able to decode which task a subject was performing after

having trained a classifier using the other subjects. Shinkareva

et al. (2008) went further, and, again using leave-one-subject-out

cross-validation, were able to decode not only which general cate-

gory of object a person was looking at (tool vs. dwelling) but also,

for eight of the twelve subjects, which specific object within that

category they were looking at. However, this decoding was lim-

ited. As they wrote: ‘The category and exemplar classification

accuracies when training across participants were on average

lower than when training within participants, indicating that a
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critical diagnostic portion of the neural representation of the cate-

gories and exemplars is still idiosyncratic to individual partici-

pants’ (Shinkareva et al., 2008, p. 8).

Hasson et al. (2004) studied coarse-scale consistencies in sub-

jects’ brain activity patterns during movie viewing. The authors cor-

related activity in corresponding brain regions across subjects so as

to find regions driven with similar time courses by the movie. This

approach is interesting because it allows an inferential statistical

brain mapping without a design matrix describing the stimulus vari-

ables. For a complex natural stimulus stream such as a movie, a

design matrix is difficult or impossible to define, because there are

so many potentially relevant variables describing the variation of

the stimulus over time. Hasson et al.’s (2004) ‘intersubject correla-

tion mapping’ is a massively univariate, activation-based approach.

However, it has a multivariate pattern-information equivalent,

‘intersubject information mapping’ (Kriegeskorte and Bandettini,

2006b), where corresponding brain regions of multiple subjects

watching the same movie are analysed for shared pattern informa-

tion using canonical variates analysis. This approach requires

coarse-scale intersubject correspondence of functional regions, but

not a fine-grained spatial consistency between the patterns encoding

the shared information. Along similar lines, more recent work has

sought to find between-subject mappings between seemingly idio-

syncratic fine-grained patterns (Guntupalli and Haxby, 2009),

although it remains to be seen whether mappings of this sort can be

found which are simple and robust. If the patterns themselves are

idiosyncratic to each subject, then a direct point-to-point compari-

son may fail despite functional correspondence of the regions con-

sidered. It may then be more appropriate to compare representations

between subjects at the more abstract level of information or pattern

similarity structure (Kriegeskorte et al., 2008b).

VIII. CONCLUSION

By dealing head-on with the intrinsically multivariate nature of the

brain’s representations, pattern-information analysis is helping us to

study population codes in greater depth and breadth. The approach

allows us to answer new questions, and helps the field of fMRI to

shake off the old accusation of being an overly simplistic ‘new

phrenology’. Moreover, the pattern-information approach promises

to help us build bridges across the traditional divides between

human fMRI, animal neurophysiology and computational model-

ing. However, the ‘bleeding edge’ nature of the work brings with it

several challenges, which we need to take very seriously if the

approach is to fulfil its promise.
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and C. Gaser, Use of neuroanatomical pattern classification to identify sub-

jects in at-risk mental states of psychosis and predict disease transition, Arch

Gen Psychiatry 66 (2009), 700–712.

N. Kriegeskorte and P. Bandettini, Intersubject-information-based brain

mapping reveals cortical representations canonically driven by a movie pre-

sentation, Soc Neurosci (2006b), Abstract 309.10.

N. Kriegeskorte and P. Bandettini, Analyzing for information, not

activation, to exploit high-resolution fMRI, Neuroimage 38 (2007), 649–

662.

N. Kriegeskorte, R. Cusack, and P. Bandettini, How does an fMRI voxel

sample the neuronal activity pattern: Compact-kernel or complex spatiotem-

poral filter?, NeuroImage 49 (2010), 1965–1976.

N. Kriegeskorte, E. Formisano, B. Sorger, and R. Goebel, Individual faces

elicit distinct response patterns in human anterior temporal cortex, Proc Natl

Acad Sci USA 104 (2007), 20600–20605.

N. Kriegeskorte, R. Goebel, and P. Bandettini, Information-based functional

brain mapping, Proc Natl Acad Sci USA 103 (2006), 3863–3868.

N. Kriegeskorte, M. Mur, and P. Bandettini, Representational similarity

analysis—Connecting the branches of systems neuroscience, Front Syst

Neurosci 2 (2008b), 4.

N. Kriegeskorte, M. Mur, D.A. Ruff, R. Kiani, J. Bodurka, H. Esteky, K.

Tanaka, and P.A. Bandettini, Matching categorical object representations

in inferior temporal cortex ofman andmonkey, Neuron 60 (2008a), 1126–1141.

N. Kriegeskorte, W.K. Simmons, P.S.F. Bellgowan, and C.I. Baker, Circular

analysis in systems neuroscience: The dangers of double dipping, Nat Neu-

rosci 12 (2009), 535–540.

J. Kruskal, Multidimensional scaling by optimizing goodness of fit to a non-

metric hypothesis, Psychometrika 29 (1964), 1–27.

S.M. LaConte, S.J. Peltier, and X.P. Hu, Real-time fMRI using brain-state

classification, Hum Brain Mapp 28 (2007), 1033–1044.

J.-H. Lee, J. Ryu, F.A. Jolesz, Z.-H. Cho, and S.-S. Yoo, Brain-machine

interface via real-time fMRI: Preliminary study on thought-controlled

robotic arm, Neurosci Lett 450 (2009), 1–6.

W. Li, J.D. Howard, T.B. Parrish, and J.A. Gottfried, Aversive learning

enhances perceptual and cortical discrimination of indiscriminable odor

cues, Science 319 (2008), 1842–1845.

S. Li, S.D. Mayhew, and Z. Kourtzi, Learning shapes the representation of

behavioral choice in the human brain, Neuron 62 (2009), 441–452.

T. Li, C. Zhang, and M. Ogihara, A comparative study of feature selection

and multiclass classification methods for tissue classification based on gene

expression, Bioinformatics 20 (2004), 2429–2437.

H. Liu, Y. Agam, J.R. Madsen, and G. Kreiman, Timing, timing, timing:

Fast decoding of object information from intracranial field potentials in

human visual cortex, Neuron 62 (2009), 281–290.

F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. Arnaldi, A review

of classification algorithms for EEG-based brain-computer interfaces, J Neu-

ral Eng 4 (2007), R1–R13.

W.-L. Luo and T.E. Nichols, Diagnosis and exploration of massively univar-

iate neuroimaging models, Neuroimage 19 (2003), 1014–1032.

A.F. Marquand, M. Howard, M.J. Brammer, C. Chu, S. Coen, and J.

Mourao-Miranda, Quantitative prediction of subjective pain intensity from

whole-brain fMRI data using gaussian processes, NeuroImage 49 (2010),

2178–2189.

D.L. Medin, Concepts and conceptual structure, Am Psychol 44 (1989),

1469–1481.

Vol. 20, 31–41 (2010) 39



N. Mesgarani, S.V. David, J.B. Fritz, and S.A. Shamma, Phoneme represen-

tation and classification in primary auditory cortex, J Acoust Soc Am 123

(2008), 899–909.

E.M. Meyers, D.J. Freedman, G. Kreiman, E.K. Miller, and T. Poggio,

Dynamic population coding of category information in inferior temporal and

prefrontal cortex, J Neurophysiol 100 (2008), 1407–1419.

C. Misra, Y. Fan, and C. Davatzikos, Baseline and longitudinal patterns of

brain atrophy in MCI patients, and their use in prediction of short-term con-

version to ad: Results from adni, Neuroimage 44 (2009), 1415–1422.

T.M. Mitchell, R. Hutchinson, R.S. Niculescu, F. Pereira, X. Wang, M. Just,

and S. Newman, Learning to decode cognitive states from brain images,

Mach Learn 57 (2004), 145–175.

T.M. Mitchell, S.V. Shinkareva, A. Carlson, K.-M. Chang, V.L. Malave,

R.A. Mason, and M.A. Just, Predicting human brain activity associated with

the meanings of nouns, Science 320 (2008), 1191–1195.

J. Mourão-Miranda, A.L.W. Bokde, C. Born, H. Hampel, and M. Stetter,

Classifying brain states and determining the discriminating activation pat-

terns: Support vector machine on functional MRI data, Neuroimage 28

(2005), 980–995.

K.-R. Muller, M. Tangermann, G. Dornhege, M. Krauledat, G. Curio, and B.

Blankertz, Machine learning for real-time single-trial EEG-analysis: From

brain-computer interfacing to mental state monitoring, J Neurosci Methods

167 (2008), 82–90.

M. Mur, P. Bandettini, and N. Kriegeskorte, Revealing representational con-

tent with pattern-information fMRI—An introductory guide, Soc Cogn

Affect Neurosci 4 (2009), 101–109.

M.A.L. Nicolelis and M.A. Lebedev, Principles of neural ensemble physiol-

ogy underlying the operation of brain-machine interfaces, Nat Rev Neurosci

10 (2009), 530–540.

K.A. Norman, S.M. Polyn, G.J. Detre, and J.V. Haxby, Beyond mind-read-

ing: Multi-voxel pattern analysis of fMRI data, Trends Cogn Sci 10 (2006),

424–430.

R. Nosofsky, Similarity, frequency, and category representations, J Exp Psy-

chol Learn Mem Cogn 14 (1988), 54–65.

H.P. Op de Beeck, Against hyperacuity in brain reading: Spatial smoothing

does not hurt multivariate fMRI analyses? NeuroImage 49 (2010), 1943–1948.

H.P. Op de Beeck, C.I. Baker, J.J. DiCarlo, and N.G. Kanwisher, Discrimi-

nation training alters object representations in human extrastriate cortex,

J Neurosci 26 (2006), 13025–13036.

H.P. Op de Beeck, K. Torfs, and J. Wagemans, Perceived shape similarity

among unfamiliar objects and the organization of the human object vision

pathway, J Neurosci 28 (2008), 10111–10123.

H. Op de Beeck, J. Wagemans, and R. Vogels, Inferotemporal neurons rep-

resent low-dimensional configurations of parameterized shapes, Nat Neuro-

sci 4 (2001), 1244–1252.

A.J. O’Toole, F. Jiang, H. Abdi, N. Pénard, J.P. Dunlop, and M.A. Parent,

Theoretical, statistical, and practical perspectives on pattern-based classifi-

cation approaches to the analysis of functional neuroimaging data, J Cogn

Neurosci 19 (2007), 1735–1752.

A.J. Parker and W.T. Newsome, Sense and the single neuron: Probing the

physiology of perception, Annu Rev Neurosci 21 (1998), 227–277.

M.V. Peelen and P.E. Downing, Using multi-voxel pattern analysis of fMRI

data to interpret overlapping functional activations, Trends Cogn Sci 11

(2007), 4–5.

M.V. Peelen, L. Fei-Fei, and S. Kastner, Neural mechanisms of rapid natural

scene categorization in human visual cortex, Nature 460 (2009), 94–97.

F. Pereira, T. Mitchell, and M. Botvinick, Machine learning classifiers and

fMRI: A tutorial overview, Neuroimage 45 (1 Suppl)(2009), S199–S209.

R.A. Poldrack, Y. Halchenko, and S.K. Hanson, Decoding the large-scale

structure of brain function by classifying mental states across individuals,

Psychol Sci 20 (2009), 1364–1372.

R.Q. Quiroga, L. Reddy, C. Koch, and I. Fried, Decoding visual inputs from

multiple neurons in the human temporal lobe, J Neurophysiol 98 (2007),

1997–2007.

J. Racine and Q. Li, Nonparametric estimation of regression functions with

both categorical and continuous data, J Econom 119 (2004), 99–130.

R.D.S. Raizada, F.M. Tsao, H.M. Liu, I.D. Holloway, D. Ansari, and P.K.

Kuhl, Linking brain-wide multivoxel activation patterns to behaviour:

Examples from language and math (accepted for publication in

NeuroImage).

R.D.S. Raizada, F.M. Tsao, H.M. Liu, and P.K. Kuhl, Quantifying the ade-

quacy of neural representations for a cross-language phonetic discrimination

task: Prediction of individual differences, Cereb Cortex 20 (2010), 1–12;

DOI: 10.1093/cercor/bhp076.

J.D. Ramsey, S.J. Hanson, C. Hanson, Y.O. Halchenko, R.A. Poldrack, and

C. Glymour, Six problems for causal inference from fMRI, NeuroImage 49

(2010), 1545–1558.

S. Raudys and A. Jain, Small sample-size effects in statistical pattern-recog-

nition—Recommendations for practitioners, IEEE Trans Pattern Anal Mach

Intell 13 (1991), 252–264.

A.C. Rencher, Methods of multivariate analysis, 2nd ed., Wiley, New York,

(2002).

A. Roebroeck, E. Formisano, and R. Goebel, Mapping directed influence

over the brain using Granger causality and fMRI, Neuroimage 25 (2005),

230–242.

G. Rota, R. Sitaram, R. Veit, M. Erb, N. Weiskopf, G. Dogil, and N. Bir-

baumer, Self-regulation of regional cortical activity using real-time fMRI:

The right inferior frontal gyrus and linguistic processing, Hum Brain Mapp

30 (2009), 1605–1614.

L.K. Saul, K.Q. Weinberger, J.H. Ham, F. Sha, and D.D. Lee, ‘‘Spectral

methods for dimensionality reduction,’’ In Semisupervised learning, O.

Chapelle, B. Schoelkopf, and A. Zien (Editors), MIT Press, Cambridge,

MA, 2006, 293–308.

A. Schurger, F. Pereira, A. Treisman, and J. Cohen, Reproducibility distin-

guishes conscious from nonconscious neural representations, Science 327

(2010), 97–99.

J.T. Serences and G.M. Boynton, Feature-based attentional modulations in

the absence of direct visual stimulation, Neuron 55 (2007), 301–312.

R.N. Shepard, The analysis of proximities—Multidimensional-scaling

with an unknown distance function I, Psychometrika 27 ( 1962), 125–

140.

R.N. Shepard, Toward a universal law of generalization for psychological

science, Science 237 (1987), 1317–1323.

S.V. Shinkareva, R.A. Mason, V.L. Malave, W. Wang, T.M. Mitchell,

and M.A. Just, Using fMRI brain activation to identify cognitive states

associated with perception of tools and dwellings, PLoS One 3 (2008),

e1394.

A. Shmuel, D. Chaimow, G. Raddatz, K. Ugurbil, and E. Yacoub, Mecha-

nisms underlying decoding at 7 T: Ocular dominance columns, broad struc-

tures, and macroscopic blood vessels in V1 convey information on the

stimulated eye, NeuroImage 49 (2010), 1957–1964.

R. Sitaram, A. Caria, and N. Birbaumer, Hemodynamic brain-computer

interfaces for communication and rehabilitation, Neural Netw 22 (2009),

1320–1328.

C.S. Soon, M. Brass, H.-J. Heinze, and J.-D. Haynes, Unconscious de-

terminants of free decisions in the human brain, Nat Neurosci 11 (2008),

543–545.

D. Sun, T.G.M. van Erp, P.M. Thompson, C. Bearden, M. Daley, L. Kushan,

M. Hardt, K. Nuechterlein, A.W. Toga, and T.D. Cannon, Elucidating a

magnetic resonance imaging-based neuroanatomic biomarker for psychosis:

Classification analysis using probabilistic brain atlas and machine learning

algorithms, Biol Psychiatry 66 (2009), 1055–1060.

40 Vol. 20, 31–41 (2010)



J.B. Tenenbaum, V. de Silva, and J.C. Langford, A global geometric frame-

work for nonlinear dimensionality reduction, Science 290 (2000), 2319–2323.

A. Tversky, Features of similarity, Psychol Rev 84 (1977), 327–352.

E. Vul, C. Harris, P. Winkielman, and H. Pashler, Puzzlingly high correlations in

fMRI studies of emotion, personality, and social cognition (formerly titled ‘‘voo-

doo correlations in social neuroscience’’), Perspect Psychol Sci 4 (2009), 274–290.

D.B. Walther, E. Caddigan, L. Fei-Fei, and D.M. Beck, Natural scene cate-

gories revealed in distributed patterns of activity in the human brain, J Neu-

rosci 29 (2009), 10573–10581.

M. Weber, S.L. Thompson-Schill, D. Osherson, J. Haxby, and L. Parsons,

Predicting judged similarity of natural categories from their neural represen-

tations, Neuropsychologia 47 (2009), 859–868.

M.A. Williams, S. Dang, and N.G. Kanwisher, Only some spatial patterns of

fMRI response are read out in task performance, Nat Neurosci 10 (2007),

685–686.

K. Worsley, J. Poline, K. Friston, and A. Evans, Characterizing the response

of PET and fMRI data using multivariate linear models, Neuroimage 6

(1997), 305–319.

Vol. 20, 31–41 (2010) 41


