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Traditionally,  fMRI  studies  have  focused  on  analyzing  the  mean  response  amplitude  within  a cortical  area.
However,  the  mean  response  is blind  to many  important  patterns  of  cortical  modulation,  which  severely
limits the formulation  and  evaluation  of  linking  hypotheses  between  neural  activity,  BOLD  responses,
and  behavior.  More  recently,  multivariate  pattern  classification  analysis  (MVPA)  has  been  applied  to
fMRI  data  to evaluate  the  information  content  of spatially  distributed  activation  patterns.  This  approach
has  been  remarkably  successful  at detecting  the  presence  of  specific  information  in  targeted  brain  regions,
and provides  an  extremely  flexible  means  of  extracting  that  information  without  a  precise  generative
model  for  the  underlying  neural  activity.  However,  this  flexibility  comes  at a cost:  since  MVPA  relies  on
pooling  information  across  voxels  that are  selective  for many  different  stimulus  attributes,  it  is  difficult
to  infer  how  specific  sub-sets  of  tuned  neurons  are  modulated  by an  experimental  manipulation.  In
ision contrast,  recently  developed  encoding  models  can  produce  more  precise  estimates  of  feature-selective
tuning  functions,  and  can  support  the  creation  of  explicit  linking  hypotheses  between  neural  activity
and  behavior.  Although  these  encoding  models  depend  on strong  – and  often  untested  – assumptions
about  the  response  properties  of  underlying  neural  generators,  they  also  provide  a unique  opportunity  to
evaluate  population-level  computational  theories  of  perception  and  cognition  that  have  previously  been

ither  
difficult to  assess  using  e

. Introduction

The field of cognitive neuroscience seeks to establish and
haracterize links between neural modulations and behavioral
easures that index latent processes such as perception, mem-

ry, and decision making. Articulating and critically testing these
inking hypotheses is far from trivial, even when neural modula-
ions are directly measured using single-unit recording techniques
deCharms & Zador, 2000). Sampling of individual neurons is inher-
ntly biased and caution must be exercised when generalizing
eyond simple animal models, particularly when studying more
bstract cognitive operations. Moreover, focusing on changes in
piking rates may  not turn out to be the correct level of analy-
is to elucidate links between brain and behavior; perhaps lower
r higher levels of analysis are more relevant (i.e. subthreshold
hanges in membrane potential or understanding the covariance

tructure of large neural populations: See Cohen and Maunsell
2009, 2010, 2011),  Mitchell, Sundberg, and Reynolds (2009)). At
he other end of the spectrum, measuring the blood oxygenation
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single-unit  recording  or conventional  neuroimaging  techniques.
© 2011 Published by Elsevier Ltd.

level dependent (BOLD) signal in humans using fMRI provides a
non-invasive and large-scale view of cortical activation while sub-
jects perform arbitrarily complex cognitive tasks. However, the
poorly understood relationship between single-unit neural activity
and the BOLD signal places a hard constraint on the specificity of
linking hypotheses that can be formulated, and makes it difficult
to reconcile results obtained across the two domains even when
similar paradigms are employed. This failure to make mutually con-
straining advances stems at least in part from a general reluctance
(or inability) in the neuroimaging community to explicitly state
hypothesized relationships between changes in neural activity, the
BOLD signal, and the cognitive state of the observer. Instead, an
implicit and overly simplistic assumption has come to dominate
the field: a larger BOLD response implies that a region plays a more
important role in task-related information processing.

This point is not brought up to attack the utility of using fMRI as
a tool for investigating links between neural activity and cognition.
Instead, the general lack of stated linking hypotheses highlights the
inherent limitation of available imaging technologies, and also the
fact that there is no viable analysis technique that circumvents all
potential shortcomings. It is becoming increasingly clear, however,

that the relative paucity of fMRI studies that evaluate specific a pri-
ori hypotheses about the link between BOLD signals and behavior
is a major obstacle that must be overcome if we are to start real-
izing the type of strong-inference that characterizes the analysis

dx.doi.org/10.1016/j.neuropsychologia.2011.07.013
http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
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nd understanding of simpler animal model circuits (e.g. Briggman
 Kristan, 2008; Field et al., 2010 for two recent examples).
ollowing this agenda, we first provide a selective historical
verview of fMRI methods that have been used over the last two
ecades. Then we critically discuss two complementary analysis
echniques that have recently been applied to fMRI data: decod-
ng approaches that utilize multi-voxel pattern analysis (MVPA)
o infer and label stimuli or cognitive states, and complementary
ncoding approaches that use a priori models of neural activity to
redict observed BOLD response patterns. In particular, encoding
odels hold promise as a means of evaluating as-yet untested ideas

bout the role of population codes in information processing, thus
ighlighting an area of inquiry for which fMRI might be well-suited
o make key new discoveries. Ultimately, we argue that these new

ethods can be used to systematically link BOLD responses with
ehavior, thus placing empirical observations into a format that is
ore comparable with data gathered using complementary neu-

oscientific techniques. Although most of this review is based on
tudies carried out in visual cortex – primarily because so much
europhysiological data is available to constrain the interpreta-
ion of fMRI signals – the issues raised in each example should in
rinciple generalize to other cortical areas and domains of inquiry.

. Fundamental assumptions about the relationship
etween neural activity and the BOLD signal

The primary assumption behind all experiments seeking to
nderstand the neural mechanisms of behavior using BOLD fMRI

s that deflections in the magnitude of the BOLD signal are at least
onotonically related to changes in the magnitude of underlying

eural activity (Boynton, Engel, Glover, & Heeger, 1996; Heeger,
uk, Geisler, & Albrecht, 2000; Logothetis, Pauls, Augath, Trinath,

 Oeltermann, 2001). However, the exact quantification of this
elationship is challenging: the BOLD signal is an indirect mea-
ure of neural activity that reflects metabolic consumption and is
enerally thought to be most closely coupled with changes in the
ocal field potential (LFP), suggesting a closer correspondence with
ncreased synaptic input into a region as opposed to the spiking
utput (Logothetis et al., 2001; Logothetis and Wandell, 2004). If
his account is accurate, then the locus of computation associated
ith a given task might be carried out in either upstream or down-

tream neural populations, and the output from these regions then
rojected into the activated ROI.

Even if we fully accept the notion that the BOLD response is
riven primarily by changes in synaptic input, in some regions the
ajority of synaptic inputs originate from within local cortical cir-

uits as opposed to from long-range projections (e.g. Douglas &
artin, 2007). Assuming that these local connections dominate,

ny measure of synaptic activity is likely to be closely coupled
ith spiking within that region, accounting for prior observations

hat the magnitude of the BOLD signal is also strongly corre-
ated with spiking rates (Heeger et al., 2000; Logothetis et al.,
001; Mukamel et al., 2005). Moreover, inhibitory activity within
reas of visual cortex has been shown to decrease the magnitude
f the BOLD signal, presumably by suppressing excitatory neu-
al responses (Logothetis, 2008; Shmuel, Augath, Oeltermann, &
ogothetis, 2006; Wade & Rowland, 2010).

On the other hand, at least one experiment suggests that spa-
ially global hemodynamic responses that precede the onset of

 periodic stimulus are not always correlated with changes in
ither LFP or spiking activity (Sirotin and Das (2009), see also:

as & Sirotin, 2011; Handwerker & Bandettini, 2011a, 2011b;
leinschmidt & Muller, 2010). However, this dissociation was only
bserved in the absence of a visual stimulus; stimulus-evoked
emodynamic activity was found to be highly correlated with
hologia 50 (2012) 435– 446

changes in the LFP as well as spiking activity. Thus, the full implica-
tion of the dissociation between spiking and vascular responses
provided by Sirotin and Das (2009) is not yet clear: in many
instances, this dissociation may play a minimal role in influencing
experimental conclusions, particularly if care is taken to remove
temporal periodicity from the stimulus sequence and to remove
spatially global fluctuations in the BOLD response that commonly
influence all voxels.

Overall, the coupling of neural activity and the BOLD signal is
likely to reflect contributions from many aspects of neural activ-
ity (e.g. synaptic activity, spiking activity, metabolic activity of glial
cells supporting active neurons, etc.; Buxton, 2002, Chapter). How-
ever, linking BOLD signals with changes in behavior may  ultimately
provide the best method for establishing fMRI as a complementary
tool to other measurement modalities that have complementary
strengths and weaknesses.

3. Univariate neuroimaging techniques

Since the advent of BOLD neuroimaging, a vast majority of
studies have focused on pinpointing the anatomical loci of neu-
ral mechanisms that putatively support a particular behavior or
cognitive function. This approach is very much in the neuropsycho-
logical tradition of linking focal brain damage to specific behavioral
deficits, albeit using a non-invasive imaging modality applied to
intact volunteer subjects. In a typical fMRI brain mapping study,
two or more experimental factors are manipulated and a general
linear model (GLM) is used to identify areas where the activation
level associated with one task is significantly different from the
activation level associated with the other(s). Ideally, the difference
between the experimental conditions being compared is perfectly
controlled in terms of both sensory and general cognitive demands,
and only a single factor of theoretical interest is allowed to vary.
Assuming that such conditions are reasonably well satisfied, the
contrast between task conditions is carried out separately on the
timeseries for every voxel, along with some statistical correction
to account for the large number of statistical tests (often �30,000).
The end result is a map  of contiguous clusters of activated voxels
forming a set of ROIs that are assumed to play an important role in
generating behavior.

The last 20 years of research using univariate mapping tech-
niques has produced numerous insights into the large scale
networks that mediate basic cognitive functions like memory
(reviewed by D’Esposito, 2007), attention (reviewed by Corbetta,
Patel, & Shulman, 2008; Corbetta & Shulman, 2002; Kastner &
Ungerleider, 2000; Serences & Yantis, 2006; Yantis, 2008), and deci-
sion making (reviewed by Heekeren, Marrett, & Ungerleider, 2008).
Conventional univariate approaches can also provide a powerful
means of dissociating cognitive operations by establishing that two
experimental conditions activate distinct neural networks. Recall,
for example, Brindley’s famous axiom stating that if two inputs lead
to indistinguishable patterns of neural activity, then they will result
in indistinguishable internal states in terms of the observer’s sub-
jective experience (Brindley, 1960, Chapter; Teller, 1984). Given the
presumed functional diversity of neurons that comprise even the
smallest ROI in a typical study, spatially overlapping fMRI activa-
tions should not be taken as strong evidence in support of identical
neural patterns. Instead, the real strength of univariate fMRI meth-
ods lies in evaluating the inverse of this axiom: any change in the
subjective state of the observer must also be accompanied by a cor-
responding change in the neural response produced by two  inputs.

Thus, even at the coarse spatial resolution afforded by fMRI, a clear
dissociation in the foci of activation observed under different task
conditions provides strong support for dissociable neural and cog-
nitive mechanisms, and this is a minimum criterion for the observer
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istinguishing between the two inputs in a behaviorally meaning-
ul way. Despite this ability to establish dissociations, it is also quite
ikely that the literature is replete with null results because the dis-
ociation happens at a spatial scale that is impenetrable to fMRI.
o some limited extent, as we review later, newer decoding and
ncoding techniques may  help to circumvent this issue.

. Limitations of univariate techniques

The main limitation of univariate methods is that different pat-
erns of neural modulation can produce indistinguishable changes
n the mean amplitude of the BOLD response, which can lead to two
ypes of inferential error: (1) incorrectly attributing an increase in
he BOLD response to a specific pattern of neural modulation, and
2) incorrectly concluding that an experimental manipulation had
o influence on neural activity within a ROI. To be more concrete,
onsider a hypothetical experiment that measures the impact of
patial attention on neural activity in the motion selective middle-
emporal (MT) area of visual cortex (see: Seidemann & Newsome,
999; Treue & Maunsell, 1996). In this hypothetical study, two
oving dot displays (or random dot kinematograms, RDKs) are pre-

ented, one on each side of fixation, and the subject has to attend
o either the left stimulus or the right stimulus while maintaining
entral fixation. Based on single unit recording studies, we  would
redict that all neurons in MT  with a spatial receptive field (RF)
orresponding to the attended stimulus should be more active than
eurons with spatial RFs located away from the attended stimulus
Boynton, 2005a; Reynolds & Heeger, 2009; Reynolds, Pasternak, &
esimone, 2000; Treue & Maunsell, 1996). Now, we  can consider

wo models for how this increase in the activity of cells with RFs
orresponding to the attended RDK might be implemented: a model
here responses increase by an additive factor (Fig. 1a), or a model

n which responses increase by multiplicative factor (Fig. 1b: note
hat the preponderance of data favors a hybrid of these two models
ith multiplicative gain dominating, but for the sake of illustration,
e will present them here as competing alternatives: for more, see
cAdams & Maunsell, 1999; Reynolds & Heeger, 2009). If we  make

he simplifying assumption that the magnitude of the BOLD sig-
al is monotonically related to the summed neural activity within
n entire ROI, then both of these models predict an increase in
he BOLD signal with attention. Of course, one type of modulation

ight produce a slightly larger increase than the other, depend-
ng on the respective magnitude of the additive and multiplicative

odulatory factors. However, without having first performed the
dentical experiment using single-unit recordings, there would be
o principled way to distinguish these accounts based solely on the

nivariate measure of BOLD response amplitude measured in the
OI.

Now, consider a more insidious scenario in which the subject is
sked not only to deploy spatial attention to one of the two RDKs,
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ig. 1. Three different models of attentional modulation across a population of motion s
opulation response profile with attention is depicted in black, and the response profile
ll  neurons in the population by a constant additive factor, (b) model in which attention 

odel  in which attention narrows the bandwidth of the population response profile by 

esponse of neurons tuned away from the attended feature.
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but also to attend to the direction of motion so that they can report
a brief change in direction (e.g. Martinez-Trujillo & Treue, 2004;
Treue & Martinez Trujillo, 1999; Treue & Maunsell, 1999). In this
situation, single-unit recording data reveal an increase in the fir-
ing rate of MT  neurons that are tuned to the attended direction
of motion, and a decrease in the firing rate of MT  neurons tuned
far away from the attended direction of motion (Fig. 1c; Boynton,
2005a; Martinez-Trujillo & Treue, 2004). Under the same simpli-
fying assumption that the BOLD response in MT  is monotonically
related to the summed neural activity in a ROI, a negligible change
in the mean amplitude of BOLD signal should be observed with
attention, as the contribution of the cells that increase their firing
rates may  be perfectly offset by those cells that are suppressed. As
in the two  models of spatial attention depicted in Fig. 1a and b,
the magnitude of the BOLD signal will vary depending on the exact
ratio of excitation to suppression; however, univariate measures
may  often be blind to this type of modulation. As a result, the true
nature of the underlying neural modulations – such as a narrowing
of the population response profile in this case – would be obscured,
despite the profound impact that such modulations have on the
precision of stimulus representations in early visual areas (Kang,
Shapley, & Sompolinsky, 2004; Pouget, Deneve, Ducom, & Latham,
1999; Series, Latham, & Pouget, 2004). This scenario likely general-
izes far beyond the relatively orderly (or at least well-documented)
realm of feature-selective tuning functions in visual cortex: any
region in which there is a non-uniform modulation of firing rates
across distinct neural sub-populations should be difficult to char-
acterize or even to detect using univariate methods.

Occasionally, within the relatively limited scope of well-studied
examples like the one provided in Fig. 1, investigators using fMRI
can gain some traction by using single-unit physiology data and
computational models as additional constraints (see Section “Com-
putational neuroimaging”). However, the problem of linking neural
activity to behavior using univariate methods is greatly exacer-
bated when more complex tasks are used that tap into higher
perceptual or cognitive mechanisms for which the neural sub-
strates are far less informed by converging evidence from other
domains (i.e. executive functions such as decision making, mem-
ory, task-switching, etc.). In such circumstances, univariate BOLD
techniques might narrow down the number of viable hypothe-
ses about underlying neural generators. However, a high degree
of skepticism should be applied to any mechanistic claims beyond
simple statements about a non-specific net increase/decrease in
overall neural activity. This is not to say that such exploratory fMRI
experiments are not worthwhile. Quite to the contrary, we argue
that they are necessary to pave the way  for more systematic future

investigations, especially in cases where no good animal model may
ever be available. We  do, however, assert that advances in analy-
sis techniques – such as the application of decoding and encoding
models – are needed to move beyond general statements that focus
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olely on relating the mean amplitude of BOLD signals to mental
perations.

. Computational neuroimaging: combining univariate
pproaches with quantitative models

The general approach of using quantitative models to link
hanges in the BOLD signal with perception and cognition was
ntroduced by investigators such as Brian Wandell, David Heeger
nd others within the computational neuroimaging tradition (see
andell, 1999 for an early review). As opposed to mapping out

etworks of regions using whole-brain GLM analyses, computa-
ional neuroimaging focuses on examining parametric modulations
ithin specific brain regions for which strong BOLD/behavior link-

ng hypotheses can be formulated based on previous psychophysics
nd single-unit recording studies. For example, Boynton, Demb,
lover, & Heeger (1999) measured the amplitude of the BOLD signal

n primary visual cortex as a function of stimulus contrast, and were
ble to link the resulting BOLD contrast response function (CRF)
o an analogous psychophysical measure of perceptual sensitivity
ithin the same observers. Importantly, the same computational
odel that linked changes in stimulus contrast to behavioral per-

ormance also accounted for the BOLD contrast response function,
hus forming a precise quantitative mapping between the BOLD
ignal and perception. It is impressive that models originally devel-
ped to explain single-unit data and psychophysics can also be
sed to account for systematic changes in the BOLD signal, as such
emonstrations suggest that even though the BOLD signal is an

ndirect measure, it nevertheless provides a meaningful assay of
eural activity. This is particularly true when investigators are able
o use rigorous computational models that are grounded in quan-
itative psychophysics and single-unit physiology to constrain the
nterpretation of their results.

Furthermore, given appropriate linking propositions and exper-
mental designs, computational neuroimaging has the potential to
rovide insights into information processing in the brain at a level
hat so far has been outside the ambit of single-unit recording.
urrent recording methods do not typically provide direct infor-
ation about computations involving large and disparate neural

opulations spread across a cortical region, or about inter-region
ommunication and synergistic computation. In contrast, though
he BOLD signal lacks the spatial resolution of single-unit record-
ng, this limitation confers an advantage in assessing large scale
hanges in cortical activation. Computational neuroimaging tech-
iques exploit this advantage in a principled and rigorous manner,
nd thus set the stage for the development of new analysis tools
hat more effectively utilize fine-grained information available in
he BOLD signal.

. Decoding using multi-voxel pattern analysis (MVPA)

Over a decade ago now, James Haxby and his coworkers pub-
ished an influential study that demonstrated how the category of
n object that a subject was viewing could be decoded based on the
patially distributed activation pattern across all voxels in inferior-
emporal visual cortex (a region comprised of many smaller regions
uch as the lateral occipital complex, fusiform gyrus, parahip-
ocampal gyrus, and early ventral visual areas such as human V4;
axby et al., 2001). The insight that Haxby and his coworkers shared
as that the standard approach of aggregating responses into a sin-

le univariate amplitude estimate was discarding a large amount

f useful information that was contained in the multivariate pat-
ern of activation across all voxels (Cox & Savoy, 2003; De Martino
t al., 2008; Formisano, De Martino, & Valente, 2008; Haynes &
ees, 2006; Kriegeskorte & Bandettini, 2007a, 2007b; Kriegeskorte,
hologia 50 (2012) 435– 446

Goebel, & Bandettini, 2006; Norman, Polyn, Detre, & Haxby, 2006;
O’Toole et al., 2007; Pereira, Mitchell, & Botvinick, 2009). Some
years later, Kamitani and Tong (Kamitani & Tong, 2005, 2006, see
also: Haynes & Rees, 2005) further advanced this general idea by
showing that precise inferences could be made about not just an
object category but also about the specific visual feature that a sub-
ject was  viewing (e.g. a specific orientation or direction of motion)
based solely on activation patterns recorded from a single visual
area (as opposed to the pattern across a large collection of func-
tionally diverse visual areas, as in Haxby et al., 2001).

In general, MVPA techniques involve training a linear classifier
or decoder (via a machine learning algorithm such as a Support Vec-
tor Machine, or SVM: Vapnik, 1995, Chapter) to map multi-voxel
activation patterns onto specific stimulus labels (e.g. faces versus
houses, 45◦ grating versus a 135◦ grating orientation, etc.). Given
that experiments using the spatially distributed response patterns
across large swaths of cortex to decode object categories or syn-
tactic categories have been reviewed extensively in the past (see
Norman et al., 2006), we focus here on the application of MVPA
to decode basic stimulus features using response patterns within a
single cortical area or an ROI (e.g. decoding different orientations
based on activation patterns across primary visual cortex, or area
V1).

MVPA techniques treat each voxel in an ROI as an indepen-
dent dimension in a multi-dimensional space, thus the vector of
BOLD responses from N voxels associated with a particular stim-
ulus would form a point in an N dimensional space Rn. Ideally,
multiple responses collected from repeated presentations of the
same stimulus will result in a cluster of data-points that lie close
to each other in Rn(Fig. 3a shows a simple conception of this repre-
sentation assuming only a 3 dimensional space corresponding the
response pattern across 3 voxels). More generally, given a set of
response vectors Va associated with stimulus type A and another
set Vb associated with stimulus type B, a linear classifier can be
constructed using a support vector machine (or one of many other
alternatives) that will compute a N − 1 dimensional hyperplane L in
the N dimensional space Rn that will attempt to divide Rn into two
regions; one containing mostly responses associated with stimu-
lus type A and the other containing mostly responses for stimulus
type B. Given this linear classifier L, a new stimulus can be assigned
to either category A or B by simply computing the side of plane L
where the new data-point lies. Critically, the hyperplane L must
be constructed using data that is independent of the data that is
to be labeled or decoded: if this strict condition of independence
is not adhered to, then the points in Rn that are being labeled
will influence the shape of the hyperplane L, resulting in a circu-
lar analysis that is guaranteed to produce above-chance decoding
accuracy. Therefore, the first step in performing a decoding anal-
ysis using MVPA is to separate all available data into a ‘training
set’ that is used to construct the hyperplane L, and an indepen-
dent ‘test set’ that is used to evaluate the ability of the classifier
to accurately label new data points. This process is referred to
as cross-validation, and is critical for evaluating the reliability of
the information contained in the spatially distributed pattern of
responses across voxels (see Kriegeskorte, Simmons, Bellgowan, &
Baker, 2009).

If no reproducible information is present, the data points in Rn

from the test set will be distributed randomly with respect to the
hyperplane L, resulting in chance decoding accuracy. If, on the other
hand, there is a reliable activation pattern associated with repeated
presentations of each stimulus feature, then test data points in Rn

will tend to cluster with points in Rn generated by the same stim-

ulus type in the training set, and labeling these points based on
hyperplane L will result in above chance accuracy. This general
approach can be extended beyond the case of two  stimulus classes
by training multiple classifiers to discriminate one stimulus from
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Fig. 2. (a) Synthetic orientation tuning map in primary visual cortex generated by band-pass filtering random orientation values. The black squares represent superimposed
3  mm × 3 mm fMRI voxels. (b) Histograms showing the distribution of orientation selectivity inside each voxel to each of the eight orientations. Aggregating the signal across
many  such biased voxels could potentially support orientation decoding (panels a and b adapted with permission from G. Boynton, 2005, his Fig. 1). (c) White lines depict
the  ventral and dorsal boundaries of human V1 (projected onto a computationally flattened cortical sheet), and each color represents areas that respond most strongly
t g wit
f ig. 1).
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o  a particular orientation (inset). The systematic orientation map across V1 – alon
eature-maps (panel c adapted with permission from J. Freeman et al., 2011, their F

ll others and then using a max  rule to assign the stimulus label
ased on the classifier with the highest selectivity (see discussion
f Fig. 5 below).

The application of MVPA to decode basic stimulus features
n an ROI is usually assumed to rely on an uneven distribution
f feature-selective neural populations within a voxel (Boynton,
005b; Haynes & Rees, 2005; Kamitani & Tong, 2005; Swisher
t al., 2010). For example, if the distribution of orientation-selective
olumns within a given voxel in primary visual cortex (V1) is het-
rogeneous, then this biased distribution should give rise to a
mall but reliable shift in the response pattern across all voxels in
esponse to stimuli rendered in different orientations (Fig. 2a and
). If this spatially distributed response pattern varies enough as a
unction of the stimulus evoking the response, then relatively sim-
le machine learning algorithms can pool the information from all
oxels to decode the feature value that a subject was viewing at any
iven moment in time. Thus, the critical methodological advance
ere is simple but elegant: computing the average response across
any voxels provides little feature-selective information, whereas
odeling fMRI data in a multi-variate fashion permits successful

ecoding of specific feature values.
While there is little debate that MVPA methods can pro-

ide more information about subtle modulation patterns, several
ecent studies have challenged the notion that successful within-

rea decoding using MVPA is primarily driven by small biases
n the within-voxel distribution of feature-selective neurons. One
ecent study reported a large-scale and systematic map  of ori-
ntation across V1, and further demonstrated that this map  was
h additional analyses – indicates that decoding might be supported by large scale

both necessary and sufficient for accurate decoding (Freeman,
Brouwer, Heeger, & Merriam, 2011, Fig. 2c). This result suggests
that successful pattern-based decoding does not rely on sub-
voxel anisotropies in the distribution of cortical columns, but
instead on the existence of neighboring clusters of voxels that sys-
tematically differ in their orientation selectivity. Another study
demonstrated that pattern classification algorithms rely heavily
on feature-selective responses recorded near large draining veins
(Gardner, 2010). However, the draining vein account is potentially
consistent with either the sub-voxel anisotropy account or the
‘coarse map’ account, as it is not clear if the veins pool signals
from like-tuned neurons that are randomly distributed or whether
the veins are themselves organized into a systematic large-scale
map. Finally, a recent study paradoxically found that spatially
smoothing fMRI data actually improves the decoding ability of
MVPA techniques, even though spatial smoothing should intu-
itively attenuate the precision of voxel level feature-selectivity (Op
de Beeck, 2010). However, given that coarse maps contain infor-
mation at both high and low spatial frequencies, this result does
not clearly establish the spatial scale of information that enables
MVPA. In the end, resolving these contrasting notions regarding
the physiological causes underlying MVPA is certainly important;
however, as long as decoding techniques can effectively distinguish
between changes in perceptual or cognitive states in situations

where univariate approaches would fail, MPVA offers many clear
advantages.

One recent set of studies that highlights the utility of MVPA
focused on decoding the contents of working memory (WM)  as



440 J.T. Serences, S. Saproo / Neuropsyc

Fig. 3. (a) Each point in the 3-dimensional space represents a response vector across
three hypothetical voxels in response to either stimulus A (Va, in red), or stimulus
B  (Vb , in blue). The grey shaded region represents a classifier plane (L) that was
computed based on data from an independent training set. (b) Same as (a), but the
mean distance between the cluster centers has been increased, which in turn should
improve the probability of successful classification. (c) Same as in (a and b) except
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he  variance of each cluster is smaller, which will also increase the probability of
uccessful classification.

ubjects remembered basic features such as the orientation or
olor of a sample item across a delay period (Serences, Ester,
ogel, & Awh, 2009; Harrison & Tong, 2009). Both of these studies
ought to test the ‘sensory-recruitment’ hypothesis, which states
hat information in WM is maintained via sustained activity in the
ame neural populations that encode the initial sensory input. For
xample, neurons in visual cortex that are responsive to a statically
resented object also show a sustained increase in activity across a
emory delay period, both in humans and in non-human primates
Awh & Jonides, 2001; D’Esposito, 2007; Pasternak & Greenlee,
005; Postle, 2006). In contrast to this account, a recent investi-
ation used univariate measures of the BOLD response to assess
he role of V1 in supporting WM for basic object properties such
hologia 50 (2012) 435– 446

as orientation and spatial frequency that are known to be encoded
in this region (Offen, Schluppeck, & Heeger, 2009). They observed
that even though overall response amplitudes in V1 increased
during sustained deployments of spatial attention, activation levels
during the retention interval of a WM task were indistinguishable
from those observed during epochs of passive fixation. Although
the observation that response amplitude fell back to baseline levels
during the retention period appears to contradict the sensory-
recruitment model of WM,  Offen et al. (2009) noted that an area
involved in WM storage may  not necessarily undergo a sustained
increase in the mean amplitude. For example, recall the scenario
presented in Fig. 1c in which feature-based attention led to the
simultaneous amplification and suppression of different neural
populations. Assuming that this type of feature-selective response
profile supports perception (Jazayeri & Movshon, 2006; Paradiso,
1988; Pouget, Dayan, & Zemel, 2003; Sanger, 1996), the sensory
recruitment hypothesis holds that a similar profile should be main-
tained throughout the WM delay period. However, a univariate
measure of the BOLD response may  not be sensitive as the contri-
bution of neurons that are more active during the delay period may
cancel out the contribution of neurons that are suppressed (Heeger
& Ress, 2002; Logothetis et al., 2001; Logothetis and Wandell,
2004; Shmuel et al., 2006). Thus, the lack of a sustained amplitude
increase across orientation-selective neurons in V1 does not
necessarily constitute evidence against the sensory-recruitment
hypothesis.

Although interpreting the functional significance of changes
in response magnitude can be complex in scenarios such as the
one outlined above, MVPA does not rely only on a change in
mean amplitude across all voxels within an ROI, but is also sen-
sitive to changes in the spatially distributed activation pattern.
Therefore, MVPA could in principle decode subtle changes in the
response profile across a region such as V1 during the mainte-
nance of information in WM.  This general pattern of results was
borne out: Serences, Ester, et al. (2009) and Harrison and Tong
(2009) failed to observe a sustained increase in amplitude in
primary visual cortex during the delay period (replicating Offen
et al., 2009), even though MVPA revealed that V1 maintained
stimulus-specific representations during the same temporal inter-
val (Fig. 4a and b; see also Ester, Serences, & Awh, 2009). Moreover,
MVPA revealed that WM does not recruit all sensory neurons that
are active upon the presentation of the sample item, but only
those populations that selectively encode relevant aspects of a
multi-featured object (Serences, Ester, et al., 2009). These two
experiments thus provide a case study in which MVPA revealed
insights into the representational basis of a cognitive operation
(WM)  that may  have been missed using traditional univariate
approaches.

In addition to simply labeling stimulus or task categories based
on observed patterns of activation, decoding approaches can also
be used to reconstruct a representation of the physical stimu-
lus set presented during an experiment. Miyawaki et al. (2008)
trained a classifier to identify contrast intensities at multiple
points in a 10 × 10 binary image array, and then used the weights
assigned to each voxel to reconstruct a literal representation of the
image the subject was  viewing during a separate test phase (see
also: Ganesh, Burdet, Haruno, & Kawato, 2008; Naselaris, Prenger,
Kay, Oliver, & Gallant, 2009 for similar experiemnts on stimu-
lus ‘reconstruction’ using different methodological approaches).
This ability to accurately reconstruct internal representations of
a stimulus is an exciting application of MVPA and related decod-
ing techniques and holds great promise for clinical applications

such as restoring sight and creating effective neural prosthe-
ses for people with limited mobility (see: Andersen, Hwang, &
Mulliken, 2010; Haynes, 2009; Hochberg et al., 2006; Weil & Rees,
2010).
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Fig. 4. (a) Subjects were instructed to remember either the orientation or the color of a sample stimulus, and then to retain only this relevant information across a 10 s delay
period.  Bar-graph depicts classification accuracy (using the mean response across the delay period as input to the classifier) as a function of the stimulus feature (color or
orientation) being classified and whether the subject was  instructed to remember orientation or color during the scan used as the basis for classification. The horizontal
lines  highlight the level of chance performance. Classification accuracy was only significantly higher than chance for the relevant feature that the subject was instructed to
remember. (b) Timecourse (see schematic) of classification accuracy in a study where subjects either had to remember the orientation of a stimulus across a delay period,
or  they had to perform an immediate report control task (i.e. a task with no WM requirements). These data show significant memory related classification in both V1  and
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ermission from F. Tong, adapted from Harrison and Tong (2009),  their Fig. S5.

. Limitations of MVPA

Although MVPA is an elegant tool that is flexible enough for a
ide range of experimental designs and research questions, this
exibility reduces the precision of the inferences that can be sup-
orted. The foremost issue is that an observation of increased
lassification accuracy does not clearly reveal how or why that
ncrease occurred. For instance, the hypothetical observation that
elective attention increases classification accuracy for decoding
5◦ from 135◦ oriented stimuli could arise in many different ways.
t could mean that the centers of the activation cluster move farther
way from the classifying plane L (see Fig. 3b). Alternatively, spatial
ttention might decrease the variability of population responses
o that activation clusters become more tightly grouped (Fig. 3c).
ny mixture of these two contributing factors would give rise to an

ncrease in classification accuracy. Thus, an increase in classifica-
ion accuracy only demonstrates that the representations became

ore separable; we learn nothing directly about what underlying
eural changes gave rise to the increased separability. Although
ypically not reported, this issue can sometimes be addressed by
omputing additional metrics such as the variance (covariance) of
he clusters and the mean distance between clusters, particularly
hen the number of classes is relatively small. When possible, such
easurements may  reveal important additional insights about how

 manipulation impacted the representation of information in a ROI,
hus heightening the inferential power of MVPA.

While such additional steps can be often be taken to deter-
ine why a classifier performed better in one scenario compared

o another, a more subtle variant of the this issue can arise if seek-
ng an even deeper understanding of the link between classifier
erformance and specific patterns of neural modulation. For exam-

le, the data shown in Fig. 1b of Kamitani and Tong (2005;  our
ig. 5b) resembles a response profile that was  recorded across a
et of feature-selective neural populations, much as expected from

 population of orientation selective cells in V1 whose responses
 permission from Serences, Ester, et al. (2009) their Fig. 3a, and panel (b) used with

have been sorted based on the preferred feature of each neuron
(i.e. a population response profile,  as shown in Fig. 1a–c). However,
the data in Fig. 5b depict the output of a ‘linear ensemble orienta-
tion detector’ that was generated using a SVM to assign a weight to
each voxel so as to maximize the response of each detector to its
preferred feature value. Each detector pools the weighted activity
across all voxels in a visual area to derive a response function that
indicates the probability that the preferred orientation is present
(as shown in Fig. 5b, which demonstrates the output of a detec-
tor optimized for 45◦ stimuli). The classifier then ‘guesses’ that the
observer is viewing the orientation associated with the maximally
active detector. Thus, the MVPA approach estimates the stimulus
label based on a weighted sum of input values across every voxel in
the ROI, which is optimal in a statistical sense because it makes use
of all the available information. On the other hand, the same opti-
mal  process of aggregating inputs from all voxels prevents direct
inferences about how the tuning profiles of the underlying voxels
(and by inference the tuning characteristics of different neural pop-
ulations) are modulated. Thus, MVPA approaches are an extremely
powerful tool for determining if there is a difference between acti-
vation patterns evoked by experimental conditions. However, the
reliance on a weighted pooling of information across many voxels
obscures information about exactly how the pattern of underlying
neural activity changes as a function of task demands.

This distinction is very important when seeking to answer
many questions in computational neuroscience. For example,
again consider the situations outlined in Fig. 1a–c, where three
different patterns of attentional modulation are depicted. Using
MVPA, you might see that different stimulus features – in this case
different orientations – were more easily classifiable with attention
compared to without attention [this is almost certainly true in

the right two  panels showing multiplicative gain and bandwidth
reduction, and possible in the left panel showing an additive mod-
ulation, but only given specific assumptions about neural/BOLD
noise distributions, see e.g. (Saproo & Serences, 2010)]. However,
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Fig. 5. (a) Each cube depicts an input fMRI activity pattern in a voxel measured while a subject viewed gratings of a given orientation. The circles represent ‘linear ensemble
orientation detectors’, each of which combines the weights (W) for each voxel such that the output of each detector becomes largest for its ‘preferred orientation’ (�i). The
classifier then guesses that the subject was viewing the preferred orientation of the detector with the highest value. (b) The output from two orientation detectors (tuned to
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5◦ and 135◦ , respectively) showing highly selective response profiles that are the 

sed  with permission from F. Tong, and reprinted from Fig. 1 of Kamitani and Tong

ne would not be able to distinguish which of these three types
f attentional modulation was occurring based solely on the
bservation of increased classification accuracy. In the next section
e describe approaches that directly model the response profile

cross tuned populations of underlying neurons. In cases where
enerating such models is tenable, they may  be able to help inves-
igators understand how an experimental manipulation influences
pecific subpopulations of neurons, which is critical for testing
heoretical accounts of how cortical circuits carry out complex
omputations.

. Encoding models of BOLD responses

In contrast to the decoding approach employed by MVPA stud-
es, forward encoding models take the opposite approach by
dopting a set of a priori assumptions about the important features
r stimulus labels that can be distinguished using hemodynamic
ignals within an ROI (Dumoulin & Wandell, 2008; Gourtzelidis
t al., 2005; Kay & Gallant, 2009; Kay, Naselaris, Prenger, & Gallant,
008; Mitchell et al., 2008; Naselaris et al., 2009; Schonwiesner

 Zatorre, 2009; Thirion et al., 2006; reviewed in Naselaris, Kay,
ishimoto, & Gallant, 2011). The features or labels in the model
re then used to predict the pattern of BOLD responses (whereas
ecoding approaches try to infer these labels based on observed
atterns of activity). In this basic sense, most traditional univariate
nalysis approaches to fMRI use simple encoding models where a
LM is used to estimate the mapping between a set of stimulus or

ask conditions and the amplitude of the response in each voxel.
ore recently encoding models have been extended to encompass

ar more complex descriptions of stimulus space that are typically
uided and constrained by existing neurophysiological data (e.g.
arandini et al., 2005; David & Gallant, 2005; Ringach, Hawken,

 Shapley, 1997; Theunissen, Sen, & Doupe, 2000; Wu,  David, &
allant, 2006). For example, Kay et al. (2008) used a mosaic of
hase-shifted Gabor filters (these were the features or labels in the
odel) rendered in different orientations and spatial frequencies

o predict the responses of voxels in visual cortex to images of nat-

ral scenes. The set of features used to model BOLD activation is
ypically referred to as a basis set,  and in this instance the encoding

odel was grounded by the known properties of single neurons
n these early visual areas (Carandini et al., 2005). A weight was
 of the optimal pooling of information across many weakly selective voxels. Figure
).

then assigned to each Gabor filter so as to best account for the
response of each voxel to a large set of natural images. After esti-
mating the weight that maps each Gabor filter to the stimulus set,
they showed subjects a set of novel images and were able to pre-
dict the exact stimulus that the subject viewed with extremely high
accuracy based on the output pattern of their encoding model (see
also: Naselaris et al., 2009).

This example highlights one major advantage of encoding mod-
els over their complementary decoding counterparts: researchers
can test one or more very specific models of an underlying neu-
ral architecture to determine which basis set best accounts for the
observed data and, more importantly, which basis set best gen-
eralizes beyond the training data to accurately characterize novel
inputs. This is a major conceptual advance, as until recently, evalu-
ating specific implementations of neural models was not commonly
carried out in human neuroimaging work. Finally, these encoding
model approaches have the distinct and important advantage that
they make explicit the set of assumptions that are used to link neu-
ral activity to changes in the BOLD response. While being explicit
by no means ensures that a given model is correct, it does ensure
that (1) the model is unambiguously stated in mathematical terms
and (2) that it is more likely to be testable, a feature lacking in many
prior fMRI investigations.

To illustrate the utility of this approach, we focus on a recent
report that used a relatively simple basis set to evaluate the
response of different color selective neural populations, or ‘color
channels’ in V1, V2, V3, V4 and VO1 (Brouwer & Heeger, 2009).
The encoding model approach described here is based on the same
principles that are thought to support within-area MVPA, and
thus can operate if there is a measurable feature-selective bias
either within voxels or across an ROI (Boynton, 2005b; Freeman
et al., 2011; Kamitani & Tong, 2005). However, instead of using
MVPA to predict the most likely color that a subject viewed on
each trial, Brouwer and Heeger (2009) instead determined the
response magnitude in each of six hypothetical color channels (see
Fig. 6) that best accounts for the observed fluctuations in the BOLD
signal.
To perform this analysis, Brouwer and Heeger (2009) first split
the data into two sets (training and test sets), just as is done in a
typical decoding study. Adopting their terminology and formula-
tions, let m be the number of voxels in a given visual area, n1 be
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Fig. 6. (a) Graphic depiction of forward encoding model used by Brouwer and Heeger (2009).  The response of each voxel is modeled as the sum of weighted responses across
six  hypothetical color channels, where each color channel is modeled as a half-wave rectified and squared sinusoidal function. See text for more details. (b) The decoding
accuracy using forward model channel responses was  virtually equivalent to that obtained using a standard MVPA classifier. (c) Most importantly, however, the encoding
model  presented in (a) could even reconstruct color stimuli that were not part of the training set. Each point of color on the circle represents a reconstructed color for one
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un  where the novel color was the color dot outside the circle.
anel (a) reprinted with permission from Brouwer and Heeger (2009).

he number of observations (trials) in the training set, n2 be the
umber of trials in the test set, and k be the number of hypothetical
olor channels, which taken together covered the entire CIE hue
pectrum. Let B1 (m × n1 matrix) be the training set, and B2 (m × n2
atrix) be the test set. B1 was related to the matrix of hypothetical

hannel outputs (C1, k × n) by the weight matrix (W,  m × k), where
he weights were estimated using a linear model of the form:

1 = WC1, (1)

here the ordinary least-squares estimate of W is computed as:

̂
 = B1CT

1 (C1CT
1 )

−1
. (2)

he channel responses (C2, k × n2) were then estimated for the test
ata (B2) using the weights estimated in (2):

̂2 = ( ̂WT ̂W)
−1

̂WT B2. (3)

Note that the first steps in this computation (Eqs. (1) and (2))

re akin to a traditional univariate GLM in which each voxel gets

 weight for each of several features or stimulus labels (in this
ase, one weight for each color channel). However, Eq. (3) imple-
ents a multivariate computation because the channel responses
estimated on each trial (in C2) are constrained by the estimated
weights assigned to each voxel and by the vector of responses
observed across all voxels on a given trial in the test set. Thus,
one key feature of this approach is that a set of estimated channel
responses can be obtained on a trial-by-trial basis as so long as the
number of voxels is greater than the number of channels. If there
are fewer voxels than channels, then unique channel response
estimates cannot be derived as the number of variables being
estimated exceeds the number of available measurements.

Using this formulation, Brouwer and Heeger (2009) demon-
strated that the vector of channel responses was precise enough to
support above chance decoding accuracy in many visual areas, and
that this performance matched that of a standard linear discrim-
inant MVPA classifier (Fig. 6b). More importantly, their forward
model was  able to reconstruct novel color stimuli that were not
part of the training set, thereby validating the underlying model in
a way  that simple linear classifiers cannot (see Fig. 6c). In a subse-
quent study, Brouwer and Heeger (in press) used a similar forward

model to study orientation selective response profiles in V1 and
were able to accurately characterize responses to complex combi-
nations of superimposed oriented gratings (i.e. ‘plaids’) based on a
model trained using pure oriented gratings.
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of completely characterizing the functional significance of a ROI
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If at least some of the assumptions described above about the
oupling of neural activity and the BOLD response are accepted,
his method may  provide a critical tool for evaluating competing
heoretical models of how various cognitive factors influence neu-
al activity in early sensory cortices. For instance, by examining the
verage pattern of direction-selective channel responses in a hypo-
hetical space- or feature-based attention experiment, it should be
ossible to distinguish the three models of modulation shown in
ig. 1a–c. In addition, the fact that channel responses can be esti-
ated on a trial-by-trial basis also opens the door to more complex

nalyses such as evaluating the predictive relationship between
hannel responses and behavioral performance on a trial-by-trial
asis using either logistic regression (in the case of task accuracy)
r simple correlation (in the case of reaction time).

Alternatively, more sophisticated metrics, such as those derived
rom information theory, can be applied to trial-by-trial channel
esponses. The field of information theory concerns itself with
he quantitative evaluation of the quality of different codes and
ith the development of optimal codes that maximize information

ransfer over noisy channels (Shannon, 1948). There is growing evi-
ence that populations of neurons communicate via neural codes,
nd the communication medium between neural populations emu-
ates a noisy channel (Doya, Ishii, Pouget, & Rao, 2007; Rieke,

arland, de Ruyter van Steveninck, & Bialek, 1999). Therefore,
nformation theory is an important tool to evaluate the efficacy of
eural coding, and in turn to generate and test models of various
ensory and perceptual phenomena. For instance, mutual informa-
ion (MI) evaluates the coupling between two variables without

aking assumptions about the order of the correlation or the
nderlying response distributions, and can be used to index the
elationship between channel responses and stimulus features,
hannel responses and behavior, or channel responses across mul-
iple cortical regions that are thought to synergistically encode
ensory information (Chai et al., 2009; Saproo & Serences, 2011).
hese types of information-based metrics, coupled with the ability
o estimate the response of feature-selective channels on a trial-by-
rial basis, may  prove to be an invaluable future tool in evaluating
heoretical principles of sensory encoding that are currently diffi-
ult to test using standard single-unit recording techniques.

. Limitations of encoding models and comparison with
ecoding approaches

The main challenge of the encoding approach lies in generating
 model that accurately characterizes neural activity within a ROI,
articularly when examining higher cognitive functions that have
ot been subjected to intense psychophysical or single-unit physi-
logy studies. However, the general approach provides a technique
or developing multiple models – even in the absence of prior neu-
ophysiological data as a guide – and then testing these models in
t least two ways. The most intuitive first-pass test is to determine
ow much variance in the dependent measure (the BOLD response)

s captured by the model. If the basis functions have no meaning-
ul relationship to the true generative mechanism that created the
ata, then the fit of the model will be poor. Maximizing basic met-
ics that reflect goodness-of-fit is therefore a reasonable first step in
ptimizing the general form of the basis functions in the encoding
odel. Second, in order to evaluate inferential power, the parame-

er estimates associated with an encoding model should be used to
haracterize or label novel stimuli that were not part of the train-
ng set (as in Brouwer & Heeger, 2009; Kay et al., 2008). In turn,

djusting the model to maximize generalizability is another form
f optimization that can be used to identify the best model that
ully characterizes the functional properties of a given ROI (see
lso: Naselaris et al., 2011). Encoding models can thus be applied to
hologia 50 (2012) 435– 446

experimental domains that are constrained by existing physiolog-
ical observations, as well as to more adventurous domains where
existing data is sparse and the studies are completely exploratory
in nature. Of course, during this process of iteratively testing and
generating new models, care must be taken to avoid circularity. In
addition, given the speculative mapping between neural activity
and the BOLD response, any deviations away from extant models
that are grounded in neurophysiology must be carefully evaluated
using other methods. The use of encoding models does however
form a principled method for developing new hypotheses about
the functional characteristics of a ROI and for inspiring additional
studies that will be mutually constraining.

Given the strong a priori assumptions that are involved in
generating and evaluating an encoding model, this approach is
also generally not very powerful when performing whole-brain
exploratory analyses, because it is highly unlikely that one basis
set would accurately capture the functional role of more than
a few cortical regions. Instead, a more efficient approach might
be to use MVPA as an initial tool for exploratory analysis, as it
is ideally suited for this purpose precisely because no assump-
tions are made about the specific relationship between underlying
neural activity and BOLD responses in a ROI (so long as there
is some relationship). This type of exploratory MVPA has gained
prominence in recent years (see Esterman, Chiu, Tamber-Rosenau,
& Yantis, 2009; Kriegeskorte & Bandettini, 2007a; Kriegeskorte
et al., 2006; Serences & Boynton, 2007; Soon, Brass, Heinze, &
Haynes, 2008 for some recent examples). Furthermore, the pro-
portion of information carried by different ROIs can be estimated
by computing the decrease in classification accuracy when a given
ROI is removed and not allowed to contribute to training/testing
the classifier, thus providing a metric that quantifies the rela-
tive importance of different nodes in a functional network (see
e.g.: Hampton, Bossaerts, & O’Doherty, 2006; Pessoa & Padmala,
2007). In turn, once a region has been identified as carrying some
type of important information about an experimental manipula-
tion using MVPA, encoding models can be developed and used
to evaluate a plethora of feasible generative neural models that
might underlie the computational architecture of a given ROI. In
this way, decoding and encoding approaches can be used in a com-
plementary manner to first identify and then to characterize the
specific contribution of nodes in a distributed network so as to
better support linking propositions between BOLD responses and
behavior.

10. Concluding remarks

Beginning with the advent of computational neuroimaging in
the late 1990s, a great deal of progress has been made with
respect to testing quantitative models of perception and cognition
using non-invasive methods such as fMRI. The recent explosion
of MVPA and forward encoding approaches holds great promise,
as these new tools have the potential to more precisely evaluate
the information content of single ROIs as well as large-scale net-
works, and to refine our understanding of how the computational
units within these networks interact to support cognition. These
decoding and encoding techniques are complementary rather than
competing: decoding models provide a more flexible method
for establishing the presence of task-related information and for
identifying important cortical regions, and encoding models pro-
vide a hypothesis-driven approach that is capable, in principle,
(Naselaris et al., 2011). This coupling of analysis techniques may
thus provide a means of exploiting the whole-brain scanning capa-
bility of fMRI while simultaneously enabling the application of
strong-inference based model testing.
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