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periments requires analysis of complex, multivariate data. In recent years, one
analysis approach that has grown in popularity is the use of machine learning algorithms to train classifiers
to decode stimuli, mental states, behaviours and other variables of interest from fMRI data and thereby show
the data contain information about them. In this tutorial overview we review some of the key choices faced
in using this approach as well as how to derive statistically significant results, illustrating each point from a
case study. Furthermore, we show how, in addition to answering the question of ‘is there information about a
variable of interest’ (pattern discrimination), classifiers can be used to tackle other classes of question,
namely ‘where is the information’ (pattern localization) and ‘how is that information encoded’ (pattern
characterization).

© 2008 Elsevier Inc. All rights reserved.
Introduction

In the last few years there has been growing interest in the use of
machine learning classifiers for analyzing fMRI data. A growing
number of studies has shown that machine learning classifiers can be
used to extract exciting new information from neuroimaging data (see
Norman et al., 2006 and Haynes and Rees, 2006 for selective reviews).
Along with the growth in interest and breadth of application, the
methods underlying the use of classifiers with fMRI have continuously
evolved and ramified (see OToole et al., 2007 for a historical overview).
Given the novelty of the approach, there have been few attempts to
organize and interrelate available methods in a single place. The
present article strives to rectify that situation by providing a tutorial
introduction to classifier methods in fMRI. Given that space
constraints prevent us from being exhaustive, our focus is on
introducing the methodology and the most common choices in its
various aspects and, through that, perspective and references for
further study.

Our presentation will be organized around the idea that classifier-
based analyses, like traditional fMRI analyses, can be characterized in
terms of a series of specific choices over a series of decision points in
the analysis process, starting from selection of the scientific question
to be asked and ending with choices among tests for hypotheses. We
begin by laying out an illustrative example of a classifier-based
analysis, and then dissect the analysis process, examining the set of
choices it implicitly involves, and the alternatives available at each
stage. There have been other proposals for a staged procedure for
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using classifiers to analyze fMRI data (e.g. Strother et al., 2002), though
with an emphasis on a single type of classifier and requiring the use of
dimensionality reduction. We broaden this idea to include several
kinds of classifier and also the use of feature selection. We conclude
with a discussion of the sorts of scientific questions that may be
fruitfully addressed using classifiers, and the ways inwhich the choice
of question impacts subsequent analysis decisions.

Where possible, we discuss strengths and weaknesses of compet-
ing options. However, it is important to acknowledge from the outset
that firm grounds for such evaluations are in many cases not yet
available. Inasmuch as we can, we offer recommendations based on
the results of formal principles or controlled empirical tests (from
Pereira, 2007). Where these are lacking, we shall sometimes inject
impressions drawn from our own personal experience with classifier-
based analysis of fMRI data. Before entering into the discussion of the
analysis proper, we begin in the next section by briefly introducing
machine learning classifiers in their own right.

What is a classifier?

Classification is the analogue of regressionwhen the variable being
predicted is discrete, rather than continuous. In the context of
neuroimaging, regression is most commonly used in the shape of a
General Linear Model, predicting the time series of each voxel from
many columns in the designmatrix (Friston et al., 2007). Classifiers are
used in the reverse direction, predicting parts of the design matrix
from many voxels.

At a more detailed level, a classifier is a function that takes the
values of various features (independent variables or predictors, in
regression) in an example (the set of independent variable values) and
predicts the class that that example belongs to (the dependent
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Fig. 1. An example where features are voxels arrayed as a row vector (left) and a dataset
is matrix of such row vectors (right).
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variable). In a neuroimaging setting, the features could be voxels and
the class could be the type of stimulus the subject was looking at when
the voxel values were recorded (see Fig. 1). Wewill denote an example
by the row vector x=[x1…xv] and its class label as y. A classifier has a
number of parameters that have to be learned from training data–a set
of examples reserved for this purpose–similarly to how regression
parameters are estimated using least squares. The learned classifier is
essentially a model of the relationship between the features and the
class label in the training set. More formally, given an example x, the
classifier is a function f that predicts the label y = f xð Þ.

Once trained, the classifier can be used to determine whether the
features used contain information about the class of the example. This
relationship is tested by using the learned classifier on a different set of
examples, the test data. Intuitively, the idea is that, if the classifier
truly captured the relationship between features and classes, it ought
to be able to predict the classes of examples it hasn't seen before. The
typical assumption for classifier learning algorithms is that the
training (and testing) examples are independently drawn from an
‘example distribution’; when judging a classifier on a test set we are
obtaining an estimate of its performance on any test set from the same
distribution. This is depicted in Fig. 2. We will denote the training and
test sets by Xtrain and Xtest, matrices with respectively ntrain and ntest
examples as their rows, and the example labels by the column vectors
ytrain and ytest. The most commonly used measure of how well a
classifier does on the test set is its accuracy. This is simply the fraction
of examples in the test set for which the correct label was predicted,
i.e. ∑ntest

i = 1 I f xið Þ;yið Þ
ntest

, where I(f(xi),y)=1 if f (xi)=yi (the label of the ith
example was predicted correctly) or 0 otherwise.

As we shall discuss in Choosing a classifier section, there are
several types of classifier. However, for reasons that will be
introduced later, our emphasis will be on linear classifiers; in this
type, the classification function relies on a linear combination of the
features, i.e. f(x)=g(w1x1+…wyxy), and the weights wi in that
combination are the parameters to be learned.

Classifier analysis: an illustrative example

In this section we will introduce an illustrative example of a
classifier-based study, which shows the basic stages of bare-bones
classifier analysis in order to provide a basis for the discussion in
subsequent sections.

The experiment that originated our dataset1 was designed to test
whether a classifier could distinguish the activation as a result of
seeing words that were either kinds of tool or kinds of building. The
subject was shown one word per trial and performed the following
task: the subject should think about the item and its properties while
the word was displayed (3 s) and try to clear her mind afterwards (8 s
of blank screen). There were 7 different items belonging to each of the
two categories and 6 experimental epochs. An epoch in this setting
was an experiment division where all 14 items were presented,
without repetition; all 6 epochs had the same items.
1 Data was kindly provided by Robert Mason and Marcel Just, Center for Cognitive
Brain Imaging, CMU, who ran the experiment.
Images were acquired with a TR of 1 s, with voxel dimensions
3×3×5 mm. The dataset underwent a typical fMRI preprocessing
stream from DICOM files using SPM (SPM, 2000). The steps followed
were volume registration and slice acquisition timing correction,
followed by a voxelwise linear detrending. A brain mask was extracted
automatically and used to restrict voxels considered in the subsequent
steps to roughly 16,000. Although the original dataset contained
several subjects, we will focus on a single one.

Each trial was converted into an example by taking the average
image during a 4 s span while the subject was thinking about the
stimulus shown a few seconds earlier; these 4 s contained the
expected peak of the signal during the trial, based on the standard
BOLD haemodynamic response function. Each example was thus a
vector containing the 16,000 feature values, corresponding to the 4 s
average signal at each of the voxels. Using each trial to obtain an
example yielded a total of 42=7 items×6 repetitions examples for
each of the tools and buildings categories. Each example vector was
normalized to have mean 0 and standard deviation 1. Examples were
further grouped by which of the 6 epochs they belonged, as depicted
in Fig. 1.

With examples in hand, the dataset was divided into a training and
a test set, with a goal of learning a classifier whose taskwas to predict
the category of an example. As mentioned previously, the parameters
of a classifier are learned from the examples in the training set, and
the classifier is then evaluated on the examples in a separate test set
(see Fig. 2).

In the example study we divided the dataset for one subject into
examples coming from either the even or the odd epochs, assigning
those in epochs 1, 3 and 5 to be the training set (42 examples) and
those in epochs 2, 4 and 6 to be the test set (42 examples). Given this,
we trained a Gaussian Naive Bayes classifier (see Choosing a classifier
section) and applied it to the test set. For 65% of the examples the label
was predicted correctly.

Given our result, could we conclude that the classifier's accuracy
was better than chance and, therefore, that the fMRI features
contained relevant information about the stimulus category?

We considered the null hypothesis that the classifier was
performing at chance level (e.g. the accuracy of prediction on average
would be 50%) and tested it using the procedure we describe in
Evaluating results section. For an accuracy of 65% with 42 test
examples the test yielded a p-value of 0.0218 and the null hypothesis
was rejected.

Classifier analysis: stages and options

The foregoing example, though presented as an unsegmented
narrative, can be broken down into a set of stages, beginning with the
conversion of raw data into a set of examples and proceeding though
choice of classifier, training and test sets and interpretation of results.
At each stage, the researcher faces a choice among multiple
alternatives. In what follows we examine each stage and the choices
Fig. 2. A classifier is learned from the training set, examples whose labels it can see, and
used to predict labels for a test set, examples whose labels it cannot see. The predicted
labels are then compared to the true labels and the accuracy of the classifier–the
fraction of examples where the prediction was correct–can be computed.
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it presents, as well as how those choices interact and are conditioned
by practical factors.

Preparing data for classifier training

Creating examples
Prior to training (or applying) classifiers we need to transform the

fMRI data into examples. Creating examples in general requires
deciding what to use as features, how to extract their values from
data and what we would like to predict. In our illustrative example
we chose to average several TRs worth of images in a single trial to
create an example; as a single word stimulus maps to a single trial
this is a natural choice. However, many other options are available.
We could instead have used each individual TR within a trial as an
example by itself, or averaged many trials with words belonging to
the same category into a single example. One is not limited to using
voxels as features. We could use the average of several voxels in one
ROI as a single feature or consider each voxel at each time point in a
trial as a different feature. The latter is used in Mitchell et al., (2004)
in a situation where what distinguishes the activation during
processing of ambiguous and unambiguous sentences is the time
course of activation in various voxels active in both conditions.
Another possibility is to forsake creating examples directly from the
activation signal and instead do it from linear model activity estimate
images obtained by using a GLM to predict each voxel. An example of
a given conditionwill then consist of the pattern of beta-values across
voxels for the predictor corresponding to that condition. Finally, the
decision of what to use as an example depends not just on what we
would like to claim contains enough information to allow a classifier
to predict but also on certain constraints described in the next
section.

The question of what to use as class labels depends on the
purposes of the researcher, but we note that one is not limited to using
stimuli classes. One could also use subject responses or decisions in
the face of a stimulus (e.g. ‘did the subject get this right or wrong?’), or
any measurement that can be tied to a particular example. A
particularly creative instance of this is the study (Haynes and Rees,
2005), where the prediction is of which of two possible images a
subject reports perceiving in a binocular rivalry situation.

In creating examples, there is an important tradeoff associated
with the number of examples produced. This is the tradeoff between
having many noisy examples (e.g. one per trial) or fewer, cleaner ones
(e.g. one of each class per run), as a result of averaging images in the
same class. Although there is no hard and fast number of examples
necessary to train a classifier, having more is generally better, to the
degree that the classifier can see through the noise present (whereas
averaging eliminates both noise and natural variability of informative
activation in the examples belonging to a class). Having more
examples helps in the training set side in that some of the classifiers
we consider require a certain number of examples to obtain good
estimates of their parameters. In our experience, at least a few tens of
examples in each class are needed. If this many are not available, there
are types of classifiers that are particularly suitable for a situationwith
very few examples, and we discuss this at greater length in Choosing a
classifier section. From the test set standpoint, having more test
examples increases the power of the test for significance of the
accuracy obtained. In Training and testing in cross-validation section
we will introduce cross-validation, a procedure that makes very
efficient use of examples for both training and testing.

Potential pitfalls
Most of the material in subsequent sections relies on a set of

assumptions about examples that simplify the analysis of classifier
performance. These are: 1) there is a source distribution of examples,
from which they can be drawn, 2) these draws are independent (the
example just drawn does not determine which will be drawn next)
and 3) training and test sets are independently drawn from this
distribution. The creation of example needs to be done in a manner
that ensures that these assumptions hold, and it is something that
reviewers should be particularly attentive do. If examples are created
from blocks or clearly separated trials in a slow event-related design,
it's reasonable to assume that they do.

Conversely, using consecutive images or overlapping trials to
produce individual training examples should be avoided on the
grounds of both 2) and 3), as the strong temporal autocorrelation in
the signal will virtually ensure those examples are not independent. A
violation of 3) leads to very optimistic accuracy estimates, as a test
example will not be a good instance of “any new example that could
be drawn” but rather very similar to examples in the training set. A
violation of 2) when 3) holds has more subtle effects. On the training
set side, it canmean that having several very similar examples will not
bring in much new information. On the test set, non-independent test
examples cannot be used for the significance tests described in
Evaluating results section (the binomial distribution outcome is the
sum of the results of independent Bernoulli trials). Note that this does
not bar us from using consecutive images in the test set, if the purpose
is not just to obtain an accuracy estimate (see Applications of pattern
classification section for Polyn et al., 2005, a case where training
examples come from block data and test examples from fast event-
related data).

Another issue to be cognizant of is the desirability of having the
same number of examples in each class. When this is not the case a
classifier learning algorithm may tend to focus on the most numerous
class, to the detriment of the others. This, in turn, can affect the
interpretation of an accuracy result (e.g. 80% accuracy may not be very
good in a situationwhere 9 of 10 examples belong to one class and 1 of
10 to the other, if it means the classifier simply predicts the most
numerous class by default). When there are different numbers of
examples in each class balance can be achieved by using only a subset
of the examples in the most numerous class, repeating the procedure
for various subsets and averaging the results. Alternatively, one can
work with the example imbalance and carefully monitor the
prediction accuracy for the various classes.

Reducing the number of features
Given that there are generally many more features than examples,

it is often advantageous to reduce the number of features considered
to focus on a subset of particular interest; this is called feature
selection. For instance, if using voxels as features, wemay just want the
voxels in a particular region of interest (ROI) or their values at a
particular point in a trial. The crucial issue to keep in mind is that the
choice of features at this stage must not depend on the labels that will
be used to train a classifier. To see why, imagine a situation where we
are interested in predicting the orientation of a stimulus grating. It is
acceptable to restrict the voxels considered to those in visual cortex,
demarcated anatomically. It is also acceptable to restrict them further
to those showing some activity during task trials relative to a baseline.
What is not acceptable is to select voxels that appear to distinguish
one orientation from another in the entire dataset. The reason for this
is that, in effect, it permits information from the test set to affect the
learning of the classifier in the training set. As a result, it leads to
optimistic accuracy estimates. Looking at the labels for the entire
dataset is sometimes called ‘peeking’. Note that the injunction against
peeking does not mean that the class labels cannot be used at all in
feature selection. They can be used once the data have been divided
into training and test sets, considering solely the training set. We
discuss the practical aspects of this approach further in Feature
selection and cross-validation section.

An alternative path to reducing the number of features a classifier
has to consider is dimensionality reduction. Here, a method such as
Singular Value Decomposition/Principal Component Analysis (Han-
sen, 1999) or Independent Components Analysis (Calhoun et al., 2003)



Fig. 3. (A) learning a linear classifier is equivalent to learning a line that separates
examples in the two classes (vectors in a 2-voxel brain) as well as possible. (B) during
cross-validation each of 6 groups of examples takes a turn as the test set while the rest
serve as the training set.
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is applied to the entire dataset matrix (rows are examples, columns
are features). The commonality between these methods is that they
transform the original feature space (e.g. voxels) into a new, low-
dimensional feature space. This yields a new dataset matrix with the
same number of rows but a reduced number of columns. This is often
worth trying–on account of both ease and possible impact–and is a
necessary step for particular classifiers, as we will see in Choosing a
classifier section. However, it is not at all guaranteed to improve
results, partially because most dimensionality reduction techniques
ignore class labels in their criteria (though there are exceptions, e.g.
SVDM Pereira and Gordon, 2006 and PLS McIntosh and Lobaugh, 2004
among others).

Example preprocessing
A final issue to consider in the construction of examples is that of

preprocessing. By this we do not mean the usual preprocessing of
neuroimaging data, e.g. motion correction or detrending, a topic
covered in great depth in Strother, (2006). We mean, rather, that done
on the examples, considered as a matrix where each row is an
example (or each column is a feature). In the example study, we
normalized each example (row) to have mean 0 and standard
deviation 1. The idea in this case is to reduce the effect of large,
image-wide signal changes. Another possibility would be to normalize
each feature (column) to have mean 0 and standard deviation 1, either
across the entire experiment or within examples coming from the
same run. This is worth considering if there is a chance that some
voxels will havemuchwider variation in signal amplitude than others.
Although a linear classifier can in principle compensate for this to
some degree by scaling the coefficient for each voxel, there are
situations where it will not and thus this normalization will help. Our
own informal experience suggests either row or column normal-
ization is generally beneficial and should be tried in turn.

Choosing a classifier

Classifier types
Earlier we introduced the idea of a classifier as a function f that

takes an example x and generates a class label prediction y = f xð Þ. The
specific kind of function being learned–and the assumptions built into
it–is what distinguishes among the various types of classifier. In this
section we review and contrast the classifiers most commonly used
with fMRI data, as well as the factors at stake in choosing which kind
to use. We supply additional detail in Appendix A.

The simplest classification procedure is called ‘nearest-neighbour’
and it doesn't even involve explicitly learning a classification function.
Classification of a test example is done by finding the training set
example that is most similar to it by some measure (e.g. lowest
euclidean distance, considering the entire feature vector) and assign-
ing the label of this nearest neighbour to the test example. Variants of
this idea include averaging all the training set examples in each class
into a single class ‘prototype’ example or assigning the majority label
in the k-nearest neighbours (k odd). Both variants minimize the effect
of noise (if the examples of different classes are all relatively close to
each other) but can be susceptible to destroying some information if
there is actual non-noise variability in the examples in each class (e.g.
examples in one class come in two clusters that are relatively
dissimilar to each other). Whereas nearest-neighbour classification
can work very well if there is a small number of features, it tends to
fare worse in situations where there are many features and only a few
are informative. Hence, it is generally used in conjunction with some
form of feature selection, as in Haxby et al., (2001) or Mitchell et al.,
(2004).

Classifiers that do learn an actual function divide into what are
called discriminative and generativemodels (Hastie et al., 2001). In the
former, the goal is to directly learn to predict from the training data;
typically this entails learning a prediction function with a given
parametric form by setting its parameters. In the latter, what is
learned is essentially a statistical model that could generate an
example belonging to a particular class. This model can then be
employed to produce a prediction. More formally, what is modelled is
the distribution of feature values conditional on example class, p(x|
y=A) and p(x|y=B)), which is then inverted via Bayes Rule to classify
(i.e. yields p(y=A|x) and p(y=B|x), and the prediction is the class for
which that probability is largest.

In the typical fMRI study, we generally have many more features
than examples; if using voxels in the whole brain as features, it's not
unusual to have a few tens of examples and tens of thousands of
features (or at least a few hundreds, if using feature selection as
described in Feature selection revisited section). The effect of this is
that it will generally be possible to find a function that can classify the
examples in the training set well, without this necessarily meaning
that it will do well in the test set (for a more detailed explanation of
the reason why see Mitchell, 1997): this phenomenon is called over-
fitting. One way of alleviating the danger of overfitting is to choose a
simple function from among those that do well in the training set.

The most natural choice for a simple function is to have the
prediction depend on a linear combination of the features that can
dampen or increase the influence of each one of them, just as linear
regression. To make the idea of a linear classifier more concrete, the
classifier is parameterized by a set of weights w and, for an example x
with V features

xw = x1w1 + N + xVwV

the classifier predicts class A if xwN0 or class B if xwb0 (with ties
broken randomly). One nice property of linear classifiers, beyond their
simplicity, is the fact that each feature affects the prediction solely via
its weight and without interaction with other features, giving us a
measure of its influence on that prediction. We discuss ways to use
this, as well as some caveats, in Pattern localization section.

A more geometric intuition for this is given in Fig. 3, in a rather
simplified two voxel brain, with three examples of each class (each
example is characterized by the value of the two voxels). Learning a
linear classifier is equivalent to learning a line that separates points in
the two classes as well as possible, the decision boundary. Instances of
classifiers that learn this are Logistic Regression (LR, known as
Multinomial Regression if there are more than 2 classes) and linear
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Support Vector Machines (SVM). Whereas this might seem remote
from the generative model idea introduced earlier, the classification
decisions of Gaussian Naive Bayes (GNB) and Fisher's Linear
Discriminant Analysis (LDA) can be expressed in this manner as
well, and thus properly included in the linear classifier category.

Note that there are many possible linear discriminants that
perfectly classify the six training examples shown in Fig. 3. The
various classifiers have different rationales for choosing among these,
which correspond to different definitions of ‘separating points as well
as possible’. Consider also that, even for a specific type of classifier,
there may still be many possible settings of its parameters that lead to
equally good predictions in the training set. The process of guiding the
procedure that sets the parameters to a solution with desirable
properties–small weights overall, for instance–is called regularization.
In the classifiers we consider this takes the shape of an extra
parameter that must be tuned also using the training set. Both the
rationales and the way regularization is done for the various kinds of
classifiers are described in Appendix A.

Classifier choice in practice
All this brings us to the question of which classifier to use, which

we will attempt to answer based on our experience and a multi-study
comparison of classifiers and feature selection methods (Pereira,
2007). In cases where there are a large number of features (e.g. all the
voxels in the cortex), GNB is generally inferior to LR and linear SVM, as
the regularization in the latter clearly help weigh down the effect of
noisy features that are highly correlated with each other. The
disadvantage mostly disappears if using feature selection, hence
GNB is a useful classifier for procedures that need to be repeatedmany
times, such as permutation tests, due to being much faster to train
than the others. LDA needs to be used either in conjunction with
extreme feature selection or with dimensionality reduction (Strother
et al., 2002), as otherwise there are typically not enough examples to
estimate its covariance matrix reliably.

LR and linear SVM tend to be roughly equivalent in terms of
performance, other than for the fact that the first lends itself more
naturally to cases where there are more than two classes. So far, and
for the sake of simplicity, we have discussed classifiers in a situation
where examples belong to one of two classes but, in general, we
might have more (several different stimulus classes, subject
responses, etc). Most of the classifiers described above work without
modification in a multiple class scenario. The one exception is SVM;
although multiclass versions do exist, most packages in current use
require one to create several two class problems (e.g. each class
versus all the others, or all pairs of classes) and combine them to
produce a multiway classification decision. We describe some
approaches to doing this in Appendix A. That said, often the object
of interest in a multiple class situation is not so much the raw
accuracy (do we believe that hundreds of classes corresponding to
hundreds of object stimuli would be distinguishable based on fMRI
activation, for instance?) as which classes can be distinguished from
which others, and how. Hence, it might make more sense to consider
all pairs of classes, train and test a classifier for each pairwise
distinction and produce what is called a confusion matrix, a
#classes×#classes matrix where entry (i,j) contains the accuracy of
the distinction between classes i and j. Often this reveals groups of
classes that are hard to distinguish from each other but that are
distinguishable from another group (e.g. several small object stimuli
versus animal and human faces).

There are more complex classifiers, such as nonlinear SVMs or
artificial neural networks, which can let interactions between features
and nonlinear functions thereof drive the prediction. In terms of Fig. 3
this corresponds to being able to have a nonlinear decision surface.
However, we will not discuss such nonlinear classifiers at length here
for two main reasons. The first is that it is not clear that they always
provide a significant advantage in practical performance relative to
linear classifiers (in extant studies or the multi-study comparison in
Pereira, 2007). In our opinion this is more a reflection of the fact that
the number of examples available is so small than of the absence of
complicated relationships between features. The second reason is that
the relationship between features and the prediction can become
harder to interpret when these classifiers are used (though see
Hanson et al., 2004, which derives a class taxonomy from the hidden
layer node activity in a neural network, for instance). This doesn't
mean that they cannot be used fruitfully when the number of features
is smaller, in particular when doing information-based mapping as
discussed in Pattern characterization section. We describe these
classifiers and their relationship to linear classifiers in more detail in
Appendix A.

Training and testing in cross-validation

Cross-validation
In our illustrative example we divided the dataset into halves, one

used for training and the other for testing. As we later discussed, we
would like to train a classifier with as much data as possible. Sadly, we
cannot train and test on the same data if the goal is obtain a useful
estimate of the classifier's true accuracy, i.e. the probability that it
would label any future test example correctly.

Furthermore, using just a few examples for testing will not lead to
a good estimate: it will be inordinately variable, as well as constrained
to a few possible values. Splitting the dataset in half to have more test
examples, as we did in the example study, means we might be
learning a much worse classifier than we potentially could with more
training examples.

Fortunately, there is a procedure that allows us to have our cake
and eat (almost) all of it too. The procedure is called cross-validation.
In its most extreme variant, cross-validation follows these steps:

• leave one example out, train on the remaining ones, make a
prediction for this example

• repeat for each example in turn
• compute the accuracy of the predictions made for all the examples.

This variant is called ‘leave-one-out’ cross-validation. Although
each classifier trained is technically different, one can expect them to
be similar and predict similarly, since they share so much training
data. Hence we treat the accuracy estimate obtained in this manner as
the expected accuracy of a classifier trained on a dataset with all but
one example, following Kohavi, (1995). Note that this also provides a
slightly conservative estimate of the accuracy we expect if we were to
train a classifier using all the available examples.

In practice, leaving each example out can be computationally
expensive because instead of a single classifier we are training as
many classifiers as there are examples. One compromise is a
procedure called a k-fold cross-validation, where k is the number of
parts into which the dataset is divided; common choices are k=10 or
k=5, corresponding to leaving out 10% or 20% of the examples on each
fold. Fortunately, fMRI datasets are often naturally divided in a way
that addresses all these issues, be it in runs or epochs within a run
where all the possible classes or stimuli appear. Our illustrative
dataset divides naturally into six groups, corresponding to the
6 epochs of stimuli in the experiment. Each group is used in turn as
the test set in cross-validation, with the remaining groups used as the
training set (on the right of Fig. 3). Hence we advise the reader to take
advantage of those natural divisions at least on a first attempt,
possibly moving to a finer grain division that still has the desired
properties if more training examples are needed.

Aside from the number of examples left out there are other
important considerations. The first is that the training data in each
fold must contain examples of all classes, as otherwise the classifier
for that fold will not be able to predict the absent ones. As mentioned
earlier, classes should be balanced, i.e. have roughly the same number



Table 1
Classification results using each of several selection methods with either various fixed
numbers of voxels (left) or with the number determined using nested cross-validation
(NCV) inside the training set of each fold (right)

Method Number of voxels Method NCV

100 200 400 800 1000 All

Accuracy 0.81 0.81 0.75 0.73 0.74 0.65 Accuracy 0.81
Searchlight 0.81 0.82 0.82 0.77 0.79 0.65 Searchlight 0.82
Activity 0.79 0.80 0.77 0.73 0.74 0.65 Activity 0.77
ANOVA 0.77 0.75 0.75 0.73 0.71 0.65 ANOVA 0.77

S204 F. Pereira et al. / NeuroImage 45 (2009) S199–S209
of examples. Furthermore, examples that are correlated–by being
close in time, for instance–should end up in the same fold. Otherwise,
the classifiermay be able to predict accurately for test examples with a
correlated counterpart in the training set.

Feature selection revisited
In Preparing data for classifier training section, we introduced the

idea of feature selection, in situations where we have some a priori
reason for picking features, e.g. wishing to test whether voxels in a
particular ROI have information. We return to the topic now in order
to discuss together with the stage of analysis where it most likely will
take place.

Feature selection is often deemed necessary in order to train
classifiers in domains where datasets have very large numbers of
features. Why might it help? Intuitively, the goal is to reduce the ratio
of features to examples, decreasing the chance of overfitting, as well as
to get rid of uninformative features to let the classifier focus on
informative ones. Almost all the fMRI decoding results reported in the
literature used either feature selection or some other form of
dimensionality reduction (Norman et al., 2006; Haynes and Rees,
2006; Carlson et al., 2003; Strother et al., 2002). Feature selection in
general is too vast a topic to broach in great detail here, but a useful
review of both terminology and the thrust of various approaches is
given in Guyon and Elisseeff, (2003).

One distinction often made is between scoring/filtering and
wrapper methods. The former involves ranking the features by a
given criterion–each feature is scored by itself, a bit like a
univariate test of a voxel–and selecting the best in the ranking.
The latter consists broadly of picking new features by how much
impact they have on the classifier given the features already selected
(or, in reverse, considering all the features to begin with and
removing features while performance increases). This can be done
by repeatedly training and applying the classifier in cross-validation
within the training set. Given the often prohibitive computational
expense of wrapper methods, due to the large number of features,
this is in general unfeasible; there are, however, heuristic
techniques that have been successfully used with fMRI data, such
as Recursive Feature Elimination (Hanson and Halchenko, 2008).
Given that feature selection is simpler to deploy initially and the
approach used by the majority of extant papers, we focus primarily
on that.

There are several generic methods for selecting informative
features. In parallel, features in the fMRI domain are often voxels
and there is a desire to be able to look for certain types of voxel
behaviour, e.g. is a voxel very selective for one particular condition or
discriminating between two groups of conditions. Hence most extant
papers resort to methods that draw from both these sources, which
we summarize below. Note that method rationales are described in
terms of voxels and conditions (classes), for clarity, but could be
adapted for other kinds of features:

• Activity—this method selects voxels that are active in at least one
condition relative to a control-task baseline, scoring a voxel as
measured by a t-test on the difference in mean activity level
between condition and baseline.

• Accuracy—this method scores a voxel by how accurately a Gaussian
Bayesian classifier can predict the condition of each example in the
training set, based only on the voxel. It does a cross-validation
within the training set for the voxel and the accuracy is the voxel's
score.

• Searchlight accuracy—the same as Accuracy, but instead of using
the data from a single voxel (GNB classifier with one feature) we
use the data from the voxel and its immediately adjacent
neighbours in three dimensions (a classifier with as many features
as neighbours, e.g. 27 in the radius 1 neighbourhood, can be GNB,
LDA or SVM).
• ANOVA—this method looks for voxels where there are reliable
differences in mean value across conditions (e.g. A is different from
B C D, or AB from CD, etc), as measured by an ANOVA.

• Stability—this method picks voxels that react to the various condi-
tions consistently across cross-validation groups in the training set
(e.g. if the mean value in A is less than B and greater than C, is this
repeated in all groups).

Precise details of how thesemethods canbe implemented andother
alternatives are provided in Appendix A. Note that the methods above
are, with the exception of searchlight accuracy, univariate. There are
promising results that show that, in some circumstances, multivariate
feature selection can work better, which are discussed in Applications
of pattern classification section. Finally, the methods listed above
provide rankings of voxels; onemight still have to decide on howmany
of the top-ranked voxels to use from the ranking for each method. For
methods that are based on a statistical criterion (e.g. t-tests of
activation), it is common to use a multiple comparison criterion such
as Bonferroni or False Discovery Rate (Genovese et al., 2002) and keep
just the features deemed significant at a given level. This is reasonable
but problematic if few or no voxels are significant (possible given the
amount of noise and very small sample sizes) or the score produced by
themethod doesnotmap to a p-value (thoughnonparametricmethods
can still be used to obtain one, see Appendix A).

Feature selection and cross-validation
Up till now we have discussed feature selection as a topic by itself.

Often, however, feature selection is used in conjunction with cross-
validation and this entails particular precautions. The first is that
selection must happen on the training set. As mentioned earlier, for
every fold in cross-validationwe have a different training set and thus
features have to be selected separately for each fold. A second reason is
that, as mentioned earlier, the methods used in practice rank features
and we still have to decide how many to use, unless the method
provides a rationale (e.g. the number of voxels where a t-test is
significant at a certain level). A typical approach is to not commit to
a specific number, but to instead produce a feature ranking by each
method for each fold. This can then be used to obtain, for each
method, an accuracy score using each of the number of voxels
desired (e.g. top 20, top 50, top 100, etc). The end product is a
number-of-methods×numbers-of-voxels table of accuracy
results, such as Table 1 (left) for our sample dataset.

If feature selection could be done prior to cross-validation (e.g. by
selecting voxels from one ROI, or by some other method that avoids
examining the labels of the test examples), the whole procedure can
be run as if the dataset contained only the selected features. In this and
the case where the method determines the number of features, the
end product is a number-of-methods×1 vector of accuracy results.

An alternative to considering all numbers of voxels is to let the
training set in each cross-validation suggest which number to pick. To
do this, we can run a nested cross-validation (NCV) inside the training
set. Consider our illustrative example, which had 6 groups of examples
based on epochs. During the first cross-validation fold, we tested on
group 1 and trained on groups 2–5. Using a nested cross-validation
means performing the cross-validation procedure described above
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inside groups 2–5 by testing on 2 and training on 3–5, then testing on
3 while training on 2, 4, 5, 6, etc. The result for this training set is,
again, number-of-methods×number-of-voxels table of results.
For each method, this table will yield the number of voxels at which
the accuracy is highest; this is the number that will be selected from
the ranking produced from groups 2–5. The end product is a number
of methods×1 vector of accuracy results, as shown in Table 1 (right)
for our sample dataset.

Evaluating results

The person training a classifier on fMRI data is concerned with
establishing that a variable of interest can be decoded from it, i.e. a
classifier can be trained whose true accuracy is better than that of a
classifier deciding at random. Formally, the “true accuracy” is the
probability that the classifier will correctly label a new example drawn
at random from the same distribution that the training examples came
from; it can also be viewed as the accuracy onewould get if one had an
infinite number of examples in the test set. The accuracy on the test set
is thus an estimate of the true accuracy of the classifier used. It is an
unbiased estimate because the test examples have not been seenby the
classifier during training. How precise an estimate it is depends on the
size of the test set; the fewer examples used the greater the variability
of the estimator, as we shall see below. This section is concerned with
two major issues: determining how well a classifier performs (and
whether it is better than random) and drawing conclusions from
multiple classifiers trained and tested on the same data.

Result significance
A statistically significant classification result is one where we can

reject the null hypothesis that there is no information about the
variable of interest (the variable being predicted by the classifier) in
the fMRI data fromwhich it is being predicted. Establishing statistical
significance is generally done by determining how improbable the
observed classification accuracy would be were the null hypothesis to
be true (this probability is called a p-value).

To illustrate, suppose we have a problem in which the classifier
must output one of two classes that are equally frequent in the data,
and that the classifier succeeds in correctly classifying k of the n test
examples it is given. To determine whether this experimentally
observed accuracy is statistically significant we must determine how
likely it is that wewould observe at least k successes out of n test trials
if the classifier were in fact operating at chance (i.e., if the null
hypothesis were satisfied). Clearly, if the null hypothesis were satisfied
and the classifier could only guess labels at random, and if the test
examples were drawn independently, then we would expect an
accuracy of k/n=0.50 on average; the actual observed accuracy might
vary above or below 0.5 due to variations in the sample of test data we
happen to be using. The point of determining the statistical
significance is precisely to determine the probability that this
experimentally observed accuracy might vary to a value at least as
high as k/n even when the null hypothesis is satisfied. Note that the
observed accuracy might also reach values substantially below 0.5
under the null hypothesis, again due to variation in the test sample,
but we are not interested in the chance of coincidental deviations
below the expected 0.5 because we would not try to claim our
classifier was succeeding in that case.

In this situation the probability of obtaining a given classification
result under this null hypothesis is easy to calculate. It can be
viewed as the outcome of tossing a coin for each of the test
examples to be classified, with the coin's bias reflecting the
probability of labelling an example correctly by chance (50% in a
two class problem, 25% in a four class problem, etc). More formally,
each coin toss can be modelled as a Bernoulli trial with probability
p of success. The probability of achieving k successes out of n
independent trials is given by the binomial distribution. If we
define k to be the number of correctly labeled test set examples out
of n, the p-value under the null hypothesis is simply P(X≥k), where
X is a random variable with a binomial distribution with n trials
and probability of success 0.5 (two class), 0.25 (four class), etc. If
the p-value is below a certain threshold (typically 0.05 or 0.01) the
result will be declared significant.

Note also that, thus far, we have been talking about a single
classifier being applied to a test set. The accuracy estimate obtained
through cross-validation is a combination of results produced by
classifiers trained on mostly overlapping training sets, hence we will
treat that estimate as if it came from a single classifier, following
common practice (Kohavi, 1995), which then allows us to test it in
exactly the same way.

The binomial test is exact (if the assumptions about example
independence hold), and hence it is preferable to alternatives such as a
χ2 test (which would have the additional issues of being unreliable in
the presence of only tens of examples, typical for our datasets). If the
assumptions do not hold or there is some suspicion of optimistic bias,
a viable alternative to testing result significance is a permutation test.
Assuming there is no class information in the data, the labels can be
permuted without altering the expected accuracy (chance level). In
practice, this entails shuffling the labels within each training set,
training a classifier and applying it to the test set. The procedure is
then repeated many times, with a different shuffling each time. Over
many repetitions, this yields a sample of accuracy results under the
null hypothesis.

The p-value in this case is the fraction of the sample that is greater
than or equal to the accuracy actually observedwhen using the correct
labels. A good review of permutation tests in classification (with one
functional neuroimaging application) is Golland and Fischl, (2003),
and we provide additional details in Appendix A. An issue when doing
this in combination with cross-validation is the need to keep track of
fold structure when permuting example labels, as it is possible to have
training sets where a given class is not represented and others where
it is overrepresented. A practical solution is to do a stratified test, and
permute within the partitions of the dataset used to build up the fold
training sets.

Result confidence intervals
Instead of testing for significance one may want to obtain a

confidence interval for the true accuracy of the classifier. Whereas this
is an interval for the parameter of a binomial distribution, an approach
often followed is to simply use a normal distribution confidence
interval (also known as a Wald confidence interval). This is generally
justified asymptotically and could be inappropriate simply on the
ground of having too small a dataset, as judged by various textbook
criteria. Brown et al., (1999) considers this issue and explains that,
even in the situations where textbooks say the Wald interval can be
used, it often fails to have the coverage probability desired. Hence
there is little justification to use it and one should resort either to the
exact interval (Langford, 2005 provides a good explanation of how to
compute it numerically) or one of several closed-form approximations
proposed in Brown et al., (1999).

Testing multiple results
Extending the significance test or confidence interval to multiple,

independent results is straightforward, in that one can simply apply a
multiple comparison correction criterion (e.g. Bonferroni) and adjust
the significance threshold accordingly. This is the situation we have
when we consider the nested cross-validation (NCV) results, as each
one is the product of training a classifier using voxels selected with a
different method. If, instead, we are just producing a number–of

methods×numbers–of voxels table of results–such as Table 1–we
could use the same approach to simultaneously test all the results in
the table. This would be conservative, however, in that the results for a
given method are correlated to some extent; this follows from the fact
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that the half the voxels used by the classifier based on the top 100
voxels are also used by the one based on the top 50, say. An easy
mistake to make in dealing with this issue is to select the maximum
result among all those obtained using a particular selection method
(the maximum of a table row); it is often accompanied by the mistake
of testing thatmaximum result for significance in theway described in
the previous section.

To see why this is a problem, consider a situation where the
classifiers are using different numbers of voxels and, in each case, have
a true accuracy (over the underlying example distribution) of 0.5. It is
possible even in this situation that, at least for one entry in the table,
the experimentally observed accuracy will be fairly high by chance;
this becomes more likely the smaller the dataset is. If we are just
deeming the ‘best’ number of voxels to be the one at which the
maximum accuracy is attained, we would pick this result and possibly
deem it significant. One possibility for addressing this issue is to report
the entire table and the number of examples used and correct for all of
them, at the risk of being conservative. The other possibility is to
report the maximum accuracy result anyway but test it differently
using a permutation test. The idea is exactly the same as the one used
for testing a single result above, but used instead to obtain a
distribution of the maximum accuracy result over label permutations.
For a given permutation the entire result table could be generated and
the maximum obtained. Over many permutations this yields a sample
of accuracy results for each cell in the table under the null hypothesis
but also, more importantly, for any derived measures such as the
maximum of each table row. The p-value under the null hypothesis for
each entry of the original result table is the fraction of the
corresponding sample that is greater than or equal to it, and this
applies to the maximum as well. The main problem of resorting to this
approach is its computational cost, though it is generally the most
principled possibility in situations where it is unclear whether the
result reporting procedure is optimistically biased.

Comparing classification results
If our goal is to compare two classifiers based on results obtained

on the same test data, we will have two samples of Bernoulli variables,
one per classifier, where each variable takes the value 1 if the
corresponding example was classified correctly and 0 if not. The
accuracy estimate for each classifier is the mean of its respective
sample of Bernoulli variables. The statement we want to make,
however, is not about the difference in accuracy estimates but about
the difference in true accuracy of those classifiers.

The naive way to address this problemwould be to treat it as a two
sample t-test. The null hypothesis would then be that the means of
the distributions the two samples came from – the classifiers' true
accuracies – were the same. The first reason this is inappropriate is
that the two samples are not independent; moreover, they are paired
and the two classifiers can be viewed as repeated measures for each
example. This suggests a second possibility, a paired t-test of the
sample of differences between Bernoulli variables for each example.
This is feasible as long as the number of examples is enough to invoke
the Central Limit Theorem but still not ideal, given that the differences
in scores can only take three values (−1, 0 or 1). A more appropriate
solution is the Wilcoxon signed-rank test, a nonparametric version of
the paired t-test. An excellent reference for testing in repeated
measure situations (and testing in general) is Lowry, (1999).

Applications of pattern classification

We have been treating a classifier-based analysis as a sequence of
stages with choices at each stage. One choice that we have not yet
directly addressed is perhaps the most important: the choice of the
initial scientific question to be answered. Our focus so far has been on
the use of classifiers for pattern discrimination. Here, the basic question
being addressed is simplywhether fMRI data carry information about a
given variable of interest. Determining the answer to this question is of
practical interest beyond answering neuroscience questions, for
instance in clinical diagnosis or lie detection (Davatzikos et al.,
2005). We can view traditional univariate methods as answering this
question on a voxel by voxel or ROI by ROI basis. Classifiers bring to the
question an increase in sensitivity of detection, both by pooling
information across many voxels but also by relaxing constraints on
spatial contiguity or the need for voxel responses to be similar.

In addition to the question of whether fMRI data carry class
information (pattern discrimination), there are at least two other basic
questions to which classifiers can be applied, namely ‘where or when
is class information represented’ (pattern localization) and ‘how is
class information encoded’ or ‘how does its encoding relate to known
relationships between stimuli’ (pattern characterization). This section
examines the extent towhich these questions can be tackled using the
machinery of linear classifiers and feature selection, as well as the
limitations and caveats. For the rest of the section we will assume
features are voxels, as it will simplify discussion.

Pattern localization

Once it has been established that class information is present in a
dataset, one may go on to ask where in the brain this information
resides. A natural approach for addressing this is to ask which voxels
contribute most strongly and reliably to the classifier's success. There
are two aspects to this: determining which voxels are being selected
and also how their weight affects the classifier prediction.

Which voxels are being selected
When cross-validation is being used, a particular voxel selection

method can and very likely will rank different voxels at the top from
fold to fold. It may come as a surprise that, for many datasets, the
overlap between the set of voxels selected in all folds versus the set
selected in an individual fold is fairly small (between 1

10 and
1
3 is typical)

even if selecting a relatively large fraction of the total number of voxels
(Pereira, 2007). This is not a problem, intrinsically, it just reflects the
fact that whatever voxels are selected contain sufficient information.
There might be redundancy, in that many voxels encode the same
things and a few get picked in each fold, and there might be a small
necessary subset, present in all folds. One possible strategy for finding
the maximal subset of voxels containing informationwould be to start
from the ones present in all or almost all folds and use them as seeds
in a clustering algorithm that would find voxels with similar response
profiles across examples.

A related issue is whether the information carried by voxels is the
same in the sets identified by various selectionmethods. There are two
ways of considering this issue: one is to look at overlap in selected sets,
now between methods, and the other to consider whether a given
classifier using different voxel sets performs differently (in particular,
whether it makes different prediction errors). For problems with two
classes, most selection criteria will find similar voxels, as there aren't
many ways that a voxel could respond differently to the two classes. In
multiclass problems results suggest there are different types of voxel
behaviour and the various voxel selection methods described earlier
can pick on different types (Pereira, 2007). Hence, if we wish to use
classifier prediction success as an indication that the voxel set it uses
contains informative voxels, it is wise to consider different selection
methods; it is also a good idea to determine whether there is any
overlap between the voxel sets selected in all folds by each method.

Which voxels drive the classifier
Given a set of voxels, a different question is which of those voxels

most strongly affect classifier predictions. The use of linear classifiers
makes it relatively simple to answer this question, as each voxel
affects the decision only through the magnitude of its weight, and not
though the interaction with other voxels. Appendix A explains how to
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get these weights for the various linear classifiers, as well as for
nearest neighbour classifiers with particular distance measures
(although in this case the weights are test example specific, rather
than the same for any example), and also shows what a typical image
of voxel weights looks like. Note that you can take this further by
multiplying the weights by the average example of each class, giving
you class-specific images.

A practical issue if using cross-validation is that, again, we have a
different set of voxels and thus a different classifier in each fold. A
heuristic approach is to group all the voxels that were selected in at
least one of the folds and run the cross-validation again on that set; if
the accuracy is comparable to what was obtained with the original
cross-validation, the classifier weights can be averaged across folds
and considered. Alternatively, if the accuracy using all the voxels
available is high–more common in problems with few classes–we can
just consider the weights over all those voxels.

One point to be aware of concerning linear classifiers is that the
regularization for LR or linear SVMs will cause the weights on
correlated voxels to shrink proportionally to the number of correlated
voxels. This is beneficial when the correlation is mostly driven by a
noise source and is the reason why, in general, both types of classifier
outperform GNB if all voxels are used (though not if coupled with
voxel selection) (Pereira, 2007). However, it is quite possible that there
will be voxels that contribute to the decision but whose weights are
smaller than those of other voxels contributing voxels.

Note that, in addition to asking where class information is present,
we can also ask when classes are represented–temporal as opposed to
spatial localization. This is discussed less commonly in the literature
Fig. 4. Top: comparison of accuracy maps obtained with 6-fold cross-validation. Each row con
The classifiers used in each roware single voxel GNB and radius 1 neighbourhood searchlight
was deemed significant using FDR q=0.01, which are highlighted in dark red. Bottom: class
and appears in two different guises. The first is to either select a
feature space corresponding to voxels at all time points in a trial or
simply restrict the time points data is extracted from, as in Mitchell et
al., (2004) or Mourao-Miranda et al., (2007). A more sophisticated
approach is used in Polyn et al., (2005), where classifiers are trained on
data where classes are cleanly separated between blocks and then
deployed as ‘sensors’ of the emergence of class-specific patterns in
event-related test data.

From global to local classifiers
The issues outlined make localization of information to specific

voxels less straightforward than onemight wish and, furthermore, the
use of linear classifiers means that no nonlinear relationships
between voxels can be learned. There is, however, an alternative
approach to answering the localization question, ‘information-based
functional brain mapping’ (Kriegeskorte et al., 2006), which can
ameliorate these problems and also address characterization ques-
tions to some extent.

A general version of this idea can be summarized as training
classifiers on many small voxel sets which, put together, cover the
whole brain. One natural candidate for this is to train a distinct
classifier for each voxel, using only the voxels spatially adjacent to it.
This is akin to shining a ‘searchlight’ on every voxel neighbourhood
in succession, and is often referred to in the fMRI community as
training ‘searchlight classifiers’; the idea of training local classifiers–
and possibly combining them into a global one–has appeared under
various other guises in the machine learning literature (see, for
instance, RBF classifiers Schoelkopf et al., 1997). Common variants for
tains eight slices from an accuracymap, inferior to superior, top of each slice is posterior.
GNB, LDA and linear SVM. On top of each slice is the number of voxels for which accuracy
ifier weights for a linear SVM classifier trained on the entire image.
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the classifier are versions of Gaussian classifiers (GNB, LDA) or linear
SVM; the original paper used the Mahalanobis distance, which is
closely related to the multivariate Gaussian distribution used in LDA.
The result is a brain map where, for every voxel, we have the cross-
validation accuracy of a classifier trained on the neighbourhood
surrounding it (typically, the 26 neighbours in 3D, although a wider
radius could be considered). This accuracy can be converted into a p-
value using either the analytical or permutation methods described
in Evaluating results section. In either case, we will obtain a p-value
map that can be thresholded using a multiple comparison correction
criterion, to identify voxel neighbourhoods of significant accuracy.

We again have a choice of which classifier to use, although in this
case the tradeoffs are different. Given the relatively small number of
voxels in a neighbourhood, it is now feasible to train more complex
classifiers. LDA is the first obvious choice, in that a covariance matrix
of voxels captures relationships between them, but one could also
attempt a nonlinear classifier if more complex relationships are
hypothesized. This will possibly be more advantageous if there are
more than two classes, although with the caveat that it is unlikely that
activation distinguishing all the classes from each other can be found
in a small region.

We provide a comparison of single voxel GNB and searchlight GNB,
LDA and linear SVM in Fig. 4 for our illustrative study. Whereas there
are reassuring similarities in the location of voxels deemed signifi-
cantly informative, there are also interesting differences between the
maps which we discuss in Appendix A. For reference, the figure also
provides the weights of a linear SVM classifier on each voxel.

Pattern characterization

Beyond asking whether and where class information is repre-
sented, classifiers can also be used to answer the question of how
classes are represented in the brain. It is perhaps here that classifiers
and other machine learning methods have the greatest untapped
potential.

The work on information mapping in the previous section can also
be considered from the point of view of pattern characterization. Each
neighbourhood classifier attempts to find relationships between the
voxels in a small set that contain information. As said earlier, given the
small number of voxels, we have the possibility of training nonlinear
classifiers to learn fairly complex relationships. But just how complex
should one expect these relationships to be? One extreme in the range
of answers is the situation in Kamitani and Tong, (2005), where voxels
are barely more sensitive to one class of stimulus than another, and
thus do not reflect an encoding of those stimuli. There is no advantage
in training a classifier that does more thanweigh a ‘vote’ of each voxel
to pool information. The other extreme is what Hanson et al., (2004)
calls a combinatorial code: the information is in the complex
combination of voxel activities in different classes. In between lie
situations where voxels have very selective responses (e.g. FFA or PPA
in Kanwisher, 2003) or voxels are selective for groups of classes (e.g.
semantic category classes that correspond to animate things versus
those that do not).

Thus far, we chose to describe the work done resorting to linear
classifiers or information mapping, both because it is simple and a
good starting point to address characterization questions. There are,
however, several recent papers that tackle this kind of question in
more sophisticated ways that elude a unified view, and hence we will
cover them only briefly. The common points between them are the
wish to correspond relationships between stimuli with the relation-
ships between activation patterns in fMRI data elicited by those
stimuli, as captured by classifiers. In the first camp, Hanson et al.,
(2004) shows that a neural network trained to distinguish examples of
eight semantic category classes learns a representation on its hidden
layer that captures a plausible taxonomy of those classes. OToole et al.,
(2005), on the same dataset, shows that the ability to distinguish the
category stimuli correlates with the ability of the classifier to
distinguish the corresponding classes. Botvinick and Bylsma, (2005)
shows that the similarity matrix of phonetic stimuli corresponds to
the similarity matrix of patterns of activation while processing them
and Aguirre, (2007) relates perceptual similarity of stimuli to the
structure of their neural representation. Hutchinson et al., (2006)
introduces hidden process models, a technique to identify multiple
cognitive processes present simultaneously in the brain with over-
lapping spatial activation, taking advantage of domain information
and class labels to constrain their causal ordering.

Finally, two recent studies leverage domain knowledge to predict
fMRI activation for new stimuli, something which can be used to
classify by comparing the predicted activation to the activation of
stimuli in the training set. Kay et al., (2008) does this for visual
stimuli, using a model of the responses of neuron populations in the
visual cortex and predicting the fMRI signal from the model
populations for each voxel. Mitchell et al., (2008) learns a model
that predicts fMRI activation for new words, based on their similarity
in a space of semantic features to words for which fMRI activation is
known.

Conclusions

In this paper we have described the various stages in a machine
learning classifier analysis of fMRI data. Aside from discussing the
choices available at each analysis stage, their interactions and the
practical factors conditioning them,we explored the use of this kind of
analysis to answer three types of scientific question. These are ‘is there
information about a variable of interest’ (pattern discrimination),
‘where is the information’ (pattern localization) and ‘how is that
information encoded’ (pattern characterization). We purposefully
focused on linear classifiers and the discrimination and localization
questions, as these are both better understood and the ones most
readers are likely to want to answer first. Space constraints meant that
some important practical considerations had to be left out of the main
text. Various appendices are provided in a longer version of this paper
available at http://www.princeton.edu/~matthewb or http://www.cs.
cmu.edu/~fpereira.

MATLAB software for performing a classifier analysis (the
Princeton Multi-Voxel Pattern Analysis toolbox) can be found at
http://www.csbmb.princeton.edu/mvpa, together with tutorials and a
very responsive online community. Alternatively, there is a separately
developed Python version of the toolbox (PyMVPA) available at http://
www.pymvpa.org/.

What we have tried to do in the present article is to lay out a
roadmap, identifying the key decision points involved in classifier-
based imaging analyses, and tracing out the available routes among
them. Like any map, this one will require continual updating, as the
terrain itself evolves. If the past is any model, then frequent and often
dramatic changes in classifier-based techniques can be expected over
coming years, especially in nascent areas such as pattern character-
ization. Regardless of the changes to come, however, it is clear that
classifier-based approaches have already evolved to the point where it
is possible to begin establishing a principled consensus concerning
basic aspects of methodology, similar to the one that has coalesced
around longer-established univariate analysis techniques.
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