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Summary

Some everyday objects are associated with a particular

color, such as bananas, which are typically yellow. Behav-
ioral studies show that perception of these so-called color-

diagnostic objects is influenced by our knowledge of their
typical color, referred to as memory color [1, 2]. However,

neural representations of memory colors are unknown.
Here we investigated whether memory color can be decoded

from visual cortex activity when color-diagnostic objects are
viewed as grayscale images. We trained linear classifiers to

distinguish patterns of fMRI responses to four different
hues. We found that activity in V1 allowed predicting the

memory color of color-diagnostic objects presented in gray-
scale in naive participants performing a motion task. The

results imply that higher areas feed back memory-color sig-
nals to V1. When classifiers were trained on neural re-

sponses to some exemplars of color-diagnostic objects
and tested on others, areas V4 and LOC also predicted

memory colors. Representational similarity analysis showed
that memory-color representations in V1 were correlated

specifically with patterns in V4 but not LOC. Our findings

suggest that prior knowledge is projected from midlevel
visual regions onto primary visual cortex, consistent with

predictive coding theory [3].

Results

Hering [4] postulated that memory color exerts a significant
influence on the perception of object color. This prediction is
supported by recent psychophysical studies showing that
the color appearance of color-diagnostic objects is biased
toward their corresponding typical colors even when they
are presented achromatically [1, 2]. However, the implementa-
tion of these cognitive influences in the neural architecture of
color processing has remained unknown.

We hypothesized that somewhere in the color-processing
pathway of the visual system, bottom-up signals representing
sensory chromatic input share a common neural representa-
tion with top-down color signals based on object knowledge.
We used human functional magnetic resonance imaging
(fMRI) in combination with pattern classification to test our
hypothesis.

In the first four runs of our fMRI experiment, 18 naive partic-
ipants (eight females) with normal color vision viewed achro-
matic images of eight color-diagnostic objects (Figure 1)
representing four different memory colors (red, green, blue,
and yellow, with two objects per category). Each object was
presented in a separate miniblock. We used grayscale photos
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of real objects (instead of line drawings, for instance) because
previous psychophysical research had indicated that the
impact of object knowledge on color appearance depends
critically on the stimuli appearing natural [2]. In the last six
runs, participants were shown real chromatic ring-shaped
stimuli from four different hue categories (red, green, blue,
and yellow), each at two luminance levels (in separate mini-
blocks) to maximize subsequent classifier generalization
(Figure 1). We asked participants to perform a motion discrim-
ination task at all times in order to ensure naivety with regard
to the purpose of the experiment, to maintain balanced atten-
tion across all trials, and to direct attention to an attribute
different than color or objects.

Memory-Color Decoding: Searchlight Analysis

We first performed a whole-brain searchlight analysis (4-voxel
radius) to find out where in the brain local fMRI patterns of
blood oxygen level-dependent (BOLD) responses to real color
were also predictive of memory color [5]. Four-way color clas-
sifiers were trained on all local activity patterns elicited by the
chromatic ring stimuli to distinguish between the four color
categories across both luminance levels. These classifiers
were then tested on the local fMRI responses to each of the
eight object images, with each object image being labeled
by its memory color. In this way, we obtained a whole-brain
map of decoding accuracies (chance level = 25%) for every
participant. These maps indicated where object colors could
be predicted based on real-color training.We found the largest
significant cluster of informative voxels within visual cortex
bilaterally near the calcarine sulcus (Figure 2A) (t17 > 2.57,
pvoxel < 0.01, cluster sizeR 68, pcluster < 0.001). Additional sig-
nificant clusters were found in the left hemisphere along the
occipital and temporal lobes, near the left supramarginal gy-
rus, as well as the postcentral gyri and the posterior portion
of the frontal lobe bilaterally.

Memory-Color Decoding: ROI Analysis

To verify the anatomical location of memory-color encoding,
we repeated the above analysis for functionally defined re-
gions of interest (ROIs) of visual areas V1–V3 and V4+ (union
of areas hV4 and VO-1; see the Experimental Procedures)
and object-responsive lateral occipital cortex (LOC), identified
independently in nine of our participants. We used recursive
feature elimination (RFE) for voxel selection and permutation
tests for statistical inference (see the Experimental Proce-
dures). As shown in Figure 2B, activity patterns in V1 allowed
prediction of object colors above chance (34%, one-tailed per-
mutation tests, p = 0.0005, Bonferroni corrected for five ROIs),
but not V3 (27%, p = 0.22, uncorrected), V4+ (23%, p = 0.89, un-
corrected), or LOC (28%, p = 0.048, uncorrected). A trend to-
ward significant decoding was observed in V2 as well,
although it marginally failed to reach significance (30%, p =
0.052, Bonferroni corrected). These results were replicated in
the independent group of nine subjects for whom retinotopic
mapping data were unavailable and anatomical masks were
used instead (Figure 2C): the prediction of memory color
based on real-color decoders worked only in V1 (30%, p =
0.012, Bonferroni corrected for three ROIs) and not in V2
(23%, p = 0.80, uncorrected) or fusiform gyrus (25%, p =
0.47, uncorrected).
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Figure 1. Experimental Design

Left: in the first four runs, participants viewed grayscale images of eight

different color-diagnostic objects (broccoli, lettuce, banana, tennis ball,

strawberry, coke can, Nivea tin, and blue traffic sign) in miniblocks of four

stimuli (stimulus duration = 2 s, interstimulus interval [ISI] = 1 s). Objects

rotated by 3�/s, and participants indicated the motion direction (clockwise

or counterclockwise). Right: in the last six runs, participants viewed real-

color stimuli of four different hues (red, green, blue, and yellow) at two lumi-

nance levels. See also Table S1 available online.
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Real-Color Decoding: Searchlight and ROI-Based

Analyses
As the prediction ofmemory color was restricted to early visual
cortex with no successful decoding in higher regions such as
V4+ and LOC, it appeared to be worthwhile to investigate
whether this result was specific to memory-color decoding
or whether it reflected classification accuracies for real-color
stimuli. We therefore trained and tested color decoders on
the data from the six ‘‘real-color runs’’ using an n 2 1 cross-
validation technique, leaving out a different run on every
iteration that was then used for testing. A corresponding
searchlight analysis showed that the whole occipital cortex,
including the fusiform region, encoded real colors (Figure 2D).
Accordingly, all ROIs encoded real colors. For functionally
localized ROIs, decoding accuracies were as follows: V1 =
40%, V2 = 38%, V3 = 34%, V4+ = 37%, and LOC = 31%.
Each ROI achieved p = 0.005 in one-tailed permutation tests,
Bonferroni corrected for five ROIs (see Figure 2E). For anatom-
ically defined ROIs, decoding accuracies were as follows: V1 =
39%, V2 = 40%, and fusiform gyrus = 35%. Each ROI achieved
p = 0.003 in one-tailed permutation tests, Bonferroni corrected
for three ROIs (see Figure 2F). Therefore, as real color could be
decoded successfully from every ROI, including V4+, the
absence of information predictive of memory color in extrastri-
ate areas cannot be explained simply by the potential poor
signal quality that has been shown to be a problem with mea-
surements of the V4+ region in some individuals [6].

Feedback from Extrastriate Visual Areas to V1
The fact that V1 encoded memory colors of objects shown in
grayscale strongly suggests that feedback from higher visual
areas was involved (see the Discussion). V4+ and LOC are
potential candidates for such feedback, as the former is
involved in high-level color perception (e.g., [7]) and the latter
in shape and object processing (e.g., [8]). We conducted two
additional analyses to examine whether the data provide sup-
port for both regions being potential candidates as sources for
feedback to V1.

First, we tested the possibility that memory color may be
represented in V4+ and LOC, yet in a way that differs from
the representation of real color. We trained classifiers to
discriminate between colors on one half of the objects that
represented four memory colors (e.g., strawberry, banana, let-
tuce, andNivea tin) and tested themon the remaining half (e.g.,
coke can, tennis ball, broccoli, and traffic sign). We averaged
the results over all 16 possible partitions into training and
test set. The assumption was that generalization would only
work if the classifier relied on memory color of objects. This
analysis showed that memory color could be decoded signifi-
cantly better than chance in V4+ (37%, p = 0.002, one-tailed
permutation tests, Bonferroni corrected for two ROIs) and
LOC (30%, p = 0.002) (see Figure 3A).
The alternative account for these results would be that clas-

sifiers relied on low-level or shape features that could have
been by chance more similar among exemplars of the same
memory color. In order to test for this alternative, we per-
formed the same classification analysis using simulated data
instead of fMRI data. We used a physiologically plausible
computational feed-forward model of object recognition to
calculate feature vectors (corresponding to C2 layer re-
sponses in HMAX [9]) for our stimuli in a way that mimics the
filtering processes thought to be carried out by V4+ and IT
circuitry. The classification based on the modeled data (see
the Experimental Procedures) was not significant (28%, p =
0.216, one-tailed permutation test, same correction as used
for V4+ and LOC). This analysis suggests that shape-related
information is unlikely to account for the across-object decod-
ing in V4+ and LOC, which in turn suggests that both regions
encode memory color, yet differently than V1. However, as
this validation relies on a computational model, it cannot fully
rule out the alternative interpretation.
Second, we therefore sought to identify an additional way in

which memory-color representations in V1 may be related to
activity in V4+ and LOC. We used representational similarity
analysis (RSA) [10] to probe whether the representational
structure between real colors and memory colors was similar
in V1 and in the extrastriate regions. To this end, we calculated
the correlation coefficients between every activity pattern
related to each of the real colors and to each memory color,
yielding one representational dissimilarity matrix (RDM) for
each ROI. We then examined which ROIs achieved highest
similarity of the obtained matrix with that obtained for V1.
We found that the average correlation between RDMswas sig-
nificant only between V1 and V4+ (r = 0.53, t8 = 3.79, p = 0.005,
one-tailed t test, Bonferroni corrected for two ROIs), and not
between V1 and LOC (r = 0.17, t8 = 1.188, p = 0.135, one-tailed
t test, uncorrected), with the former being significantly higher
(one-tailed paired t test, t8 = 5.37, p < 0.001). These results
show that V1 and V4+ resemble each other significantly in
terms of the similarity relationships between patterns encod-
ing memory and real colors, respectively.

Discussion

In the present study, we addressed a fundamental question in
color vision, namely the effect of prior knowledge on color pro-
cessing. Our results show that color decoders could predict,
from fMRI activity in V1, the true color of eight color-diagnostic
objects, representing four different color categories, in the
complete absence of chromatic stimulation. The results were
found in naive observers carrying out a motion task and there-
fore appear to be the result of an automatically occurring pro-
cess during object vision rather than of active imagery. A
potential source of the memory-color signal in V1 may be



Figure 2. Multivoxel Pattern Analysis Results

(A) Whole-brain searchlight analysis across all 18 subjects. Prediction of the memory colors of the grayscale object images based on training on the real-

color runs using local fMRI activity patterns was significantly above chance in early visual cortex. Brain sections are centered on position x = 14, y =294, z =

0 in MNI space. Searchlight maps are cluster-size-corrected at pvoxel < 0.01, pcluster < 0.001.

(B) Among functionally localized ROIs in nine subjects, prediction of memory color based on real-color training was successful only in area V1.

(C) In anatomically defined ROIs of the remaining nine subjects, prediction of memory color based on real-color training was successful only in area V1.

(D) Searchlight analysis. Prediction of real colors based on real-color training was significantly above chance in the entire occipital cortex. The same

conventions as those in (A) are used.

(E) Among functionally localized ROIs, prediction of real colors was significantly above chance in all visual areas and in LOC.

(F) In anatomically defined ROIs, real-color prediction based on real-color training worked in each of the three ROIs.

Bar plots depict mean decoding accuracies. Error bars represent the SEM. *p < 0.05, **p < 0.01 (one-tailed permutation tests, Bonferroni corrected). See the

Supplemental Experimental Procedures for further analyses. See also Figure S1.
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V4+, as they shared a strong correlation in the structure of
memory-color representations. Some authors interpret such
similarity as ‘‘representational connectivity’’ between brain
regions [10], which in this case fits well with our interpretation
of the results that information is projected from higher-level
visual regions onto primary visual cortex. The neural sub-
strates revealed in the present findings may underlie several
perceptual effects having to do with top-down influences of
prior knowledge involving color [1, 2, 11–13]. To our knowl-
edge, the present results are the first to demonstrate that
memory color influences neural activity at the earliest levels
of cortical processing, in the primary visual cortex.

The results are consistent with numerous experiments
showing that, instead of encoding a veridical representation
of the physical environment, V1 activity is in fact strongly
modulated by top-down feedback, which can be readily de-
tected with fMRI [14]. V1 activity has been shown to represent
perceived lightness rather than physical stimulus intensity
[15], to represent perceived rather than the physical size of
stimuli [16, 17], to encode context-dependent feedback in
the visual field [18], and to signal high-level grouping effects
of global Gestalt cues [19].

Our own and the discussed results are consistent with pre-
dictive coding theory [3]. In the context of the present study,
the assumption is that higher visual areas send predictions
of expected object colors to V1, where they are compared to
bottom-up information. Predictive coding is efficient in that it
can enhance weak sensory input through prior knowledge
and at the same time boost neural processing of unexpected
(as opposed to predictable) aspects of the environment [20].
Thus, the omission of an expected visual stimulus can, for
instance, even lead to stronger fMRI responses in V1 than its
presence [21].
In this context, the BOLD signal in V1 represented either

the mismatch between expected and incoming color signals
or the predictive signal fed back to early visual cortex.
Interestingly, this prediction-related activity resembled the
expected signal driven by real-color input. Similarly, the agree-
ment between representational structures in V1 and V4+ sug-
gest that V4+ may be both receiver and source of color signals
in V1 during sensory color stimulation and object viewing,
respectively.
Based on previous imaging studies (e.g., [7, 22]), it may

seem surprising that significant decoding was observed in
V1 only but not in color-sensitive V4+. Several reasons may
have contributed to this. Color signaling in V4+ could have
been weakened due to vascular artifacts [6] and due to the
attentional focus on motion rather than on color [23, 24]. Slot-
nick [25], for instance, does find upmodulation of V4+ in a
memory task when subjects actively remembered that an
abstract figure had previously been presented in color in the
study phase. However, these reasons cannot fully account
for the lack of decoding in V4+ as decoding of real colors
was well above chance in V4+. Perhaps one reason lies in



Figure 3. Color Generalization across Objects and Representational Simi-

larity with V1

(A) Classifiers trained on responses to one set of color-diagnostic objects

and tested on the other (with no overlap of object identities in the two

sets) correctly predicted the memory color of objects in the test set in V4+

and LOC, with an advantage for V4+ [V4+ versus HMAX: t(8) = 3.69, p =

0.009, Bonferroni corrected for three comparisons; V4+ versus LOC: t(8) =

2.33, p = 0.024, uncorrected]. In contrast, classifiers failed to predict low-

level and shape features between objects of the training and test sets. Fea-

tures were extracted using the physiologically plausible HMAX algorithm.

(B) Representational similarity with V1 was found in V4+ but not LOC. This

shows that the similarity relationships between patterns encoding memory

and real colors were significantly correlated between V1 and V4+.

Error bars represent the SEM. *p < 0.01 (Bonferroni corrected) +p < 0.05

(uncorrected). One-tailed paired t tests (df = 8) were used for pairwise

comparisons.
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the categorical perception of grayscale rather than colored
objects.

Also, classification accuracy may in principle be related to
differences in the spatial inhomogeneity of feature-selective
neuronal assemblies across voxels [26], which has recently
also been suggested in context of color encoding along cardi-
nal color axes [27]. Accordingly, our analyses cannot exclude
the possibility that memory color may also be present in
high-level regions (as is indeed suggested by our across-
object classification).

Our data provide, to our knowledge, the first evidence for
encoding of color in V1 in the absence of any chromatic input.
The present results therefore add one more dimension, color,
to a growing body of literature showing that V1 activity is
heavily influenced by feedback from higher-level regions,
encoding perceived rather than purely physical stimulus prop-
erties even if they are absent from bottom-up input. The pre-
sent results offer a neural account for previously observed
perceptual effects of memory color and provide additional
evidence for a role of V1 as convergence zone between
bottom-up input and top-down predictive signals. The present
findings have implications beyond color vision, as they show
how object knowledge can serve as a prior to constrain the
inferences the visual system makes at earliest processing
stages about the appearance of complex natural scenes.

Experimental Procedures

Participants

Eighteen volunteers (mean age 27.2 years, SD 4.1 years, eight female) with

normal color vision, as assessed using Ishihara plates, participated in the

main experiment. All provided written informed consent, and the ethics

committee of the University Hospital Tübingen approved the experiment.

Participants were naive with respect to the purpose of the study. Instead,

they were told that its aim was to investigate motion using object and color

stimuli. Nine participants (mean age 28.4, SD 5.1 years, four female) took

part in a retinotopic mapping experiment.
Behavioral Tasks and Imaging Paradigm

In the first four fMRI runs, participants were required to view slowly rotating

grayscale images of objects and to indicate for each stimulus by button

press whether rotation occurred in a clockwise (right button) or counter-

clockwise (left button) direction. The images were isoluminant grayscale

photos of eight different color-diagnostic objects, two for each color

category: a strawberry and coke can for red, broccoli and lettuce for green,

a traffic sign and Nivea tin for blue, and a tennis ball and banana for yellow

(see the Supplemental Experimental Procedures for details). Every image

was presented for 2 s, and the ISI was 1 s. Object images were presented

in miniblocks of four trials containing the same object but with random rota-

tion direction on each presentation (see Figure 1). Each run contained

32 miniblocks. The sequence of objects was pseudorandomized such that

every object was preceded equally often by all objects.

In the last six runs, participants viewed chromatic stimuli consisting of

abstract color rings similar to those used by Brouwer and Heeger [7] (see

the Supplemental Experimental Procedures for details). Each ring was

defined by its color (red, green, blue, or yellow) and brightness (high or

low: 610% around the object’s luminance), yielding eight stimuli that were

presented in separate miniblocks (see Table S1 for chromaticity coordi-

nates). In each trial within a miniblock, rings randomly either expanded or

contracted. The design was identical to that of the object runs. Participants

performed a one-back matching task that amounted to a motion task in the

majority of trials since hue and luminance were constant within miniblocks.

fMRI Scan Parameters and Preprocessing

Data were collected on a 3T fMRI systemwith a resolution of 3 mm isotropic

voxel size across 33 slices and preprocessedwith SPM5 (http://www.fil.ion.

ucl.ac.uk/spm/). Neural responses to objects and color rings were esti-

mated with a separate general linear model for each run and with

separate boxcar regressors for each miniblock (see the Supplemental

Experimental Procedures for details).

Retinotopic Mapping and Anatomical Masks

In nine subjects, polar angle maps were obtained using standard methods.

Areas hV4 and VO-1 are reported as joint ROI ‘‘V4+’’ since segregated

analyses yielded same results as for the joint ROI. To confirmmemory-color

decoding in V1 for the remaining nine participants, we used the automatic

cortical parcellation provided by Freesurfer to obtain ROI masks of V1,

V2, and fusiform gyrus (see the Supplemental Experimental Procedures

and Figure S1).

Multivoxel Pattern Analysis

We analyzed our data with in-house Matlab code based on the Princeton

multivoxel pattern analysis toolbox (http://www.pni.princeton.edu/mvpa/).

For all analyses, we applied linear discriminant analysis for pattern classifi-

cation using shrinkage estimation to make sure that covariance matrices

were nonsingular [28, 29]. We obtained a whole-brain map of decoding

accuracies for every participant. After smoothing with a 6 mm Gaussian

kernel, group statistics were calculated using one-sample t tests. Results

were corrected for multiple comparisons using a cluster size threshold

determined on the basis of Monte-Carlo simulations [30]. For ROI-based

decoding of memory color based on real-color training, we first used a

feature selection algorithm (RFE) to identify those voxels that contributed

most strongly to the discrimination of real colors (see the Supplemental

Experimental Procedures). We used the more accurate approach of permu-

tation tests for statistical inference in the ROI-based classification analyses

[28]. This involved permuting the labels of the training data repeatedly to

bootstrap a null distribution for every statistic (see the Supplemental Exper-

imental Procedures).

Reported p values represent the fraction of permutations yielding classi-

fication accuracies that were at least as high as the observed one.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, one figure, and one table and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2013.09.016.
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