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Review
Visual cognition is limited by computational capacity,
because the brain can process only a fraction of the
visual sensorium in detail, and by the inherent ambiguity
of the information entering the visual system. Two
mechanisms mitigate these burdens: attention priori-
tizes stimulus processing on the basis of motivational
relevance, and expectations constrain visual interpret-
ation on the basis of prior likelihood. Of the two, atten-
tion has been extensively investigated while expectation
has been relatively neglected. Here, we review recent
work that has begun to delineate a neurobiology of
visual expectation, and contrast the findings with those
of the attention literature, to explore how these two
central influences on visual perception overlap, differ
and interact.

Introduction
‘Everyone’, William James famously wrote, ‘knows what
attention is’ [1]. A similar claim might be made for expec-
tation: we have a rich and immediate introspective sense of
what it means to expect a forthcoming stimulus, or for
expectation to be violated (‘Surprise!’). By comparison with
attention, however, psychologists and neuroscientists have
traditionally dedicated relatively little effort to exploring
the brain mechanisms by which expectations about the
forthcoming sensory world are generated, represented and
implemented. On the contrary, the effects of perceptual
expectation often tend to be conflated with those of atten-
tion in the empirical literature. For instance, many exper-
imental protocols geared at gauging the effects of attention
deploy probabilistic cues that manipulate subjects’ expec-
tations concerning the likely location or feature of a forth-
coming target stimulus [2]. However, the behavioural and
neural consequences of such probabilistic cueing are typi-
cally attributed exclusively to the effects of attention, even
though this procedure also engenders perceptual expec-
tations, as well as their fulfilment or violation. The purpose
of this review, therefore, is twofold. First, we aim to high-
light and synthesize recent empirical and computational
work that is fostering an emergent neurobiology of expec-
tation (with a focus on the visual domain). Second, in
parallel to reviewing characteristics of visual expectation,
we will emphasize how these might differ from, overlap
with, or interact with, the much better-characterized pro-
cesses underlying visual attention. We begin by consider-
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ing the purpose and behavioural consequences of visual
expectation.

Expectation in visual cognition
Expectations are brain states that reflect prior information
about what is possible or probable in the forthcoming sen-
sory environment.Forexample, onenteringa familiar room,
we have prior knowledge about the likely configuration of
furniture, paintings or plants, gleaned over multiple
previous encounters. This type of foreknowledge can be
employed to reduce the computational burden of visual
perception in two ways. First, expectations can guide the
acquisition of visual information; aspects of the environ-
ment that are constant (and thus conform to previously
formed expectations) do not have to be processed in depth
repeatedly. Second, expectation facilitates the interpret-
ation of visual input. Information arriving at the retina is
inherently ambiguous: a single pattern of retinal stimu-
lation can be caused by myriad different stimulus configur-
ations,andasingleobject canelicitmanydistinctpatternsof
retinal stimulation, depending on viewpoint, lighting con-
ditions, or the interposition of occluding surfaces. To over-
come these ambiguities, the interpretation of a given
percept (‘Is this a breadbox or a mailbox?’) can be guided
by contextual probabilities (‘Am I in the kitchen or on the
street?’). Accordingly, much classical behavioral research
(reviewed in [3]) has demonstrated that objects placed
within a congruent context (for example, a lamp in a bed-
room) are detected faster and more reliably than objects
placed in an incongruent context (for example, a lampon the
beach). Similar results have been found in more controlled
psychophysical experiments using rudimentary stimuli: for
instance, detection of a Gabor patch (sinusoidal gratings) is
facilitated by colinearly oriented flanking patches [4].
Despite ongoing controversy [5], these effects do not appear
to be attributable to a change in response bias alone [6].
Benefits to visual recognition also accrue from preceding
items that have been jointly or conditionally associatedwith
a stimulus or array [7], from the statistics of natural image
information [8], or even the mere recent presentation of
related information [9]. The perceptual processes under-
lying visual detection and recognition, thus, have evolved to
benefit fromprobabilistic informationaboutwhat is likely to
occur, via associative learning, priming, or contextual pro-
cessing of scene information.

Some important similarities and distinctions can be
drawn between these characteristics of visual expectation
6.003 Available online 27 August 2009 403

mailto:christopher.summerfield@psy.ox.ac.uk
mailto:tobias.egner@duke.edu
http://dx.doi.org/10.1016/j.tics.2009.06.003


Box 1. Neurocomputational mechanisms of facilitation by top-down information.

We consider four ways in which perceptual decisions could be

affected by the type of facilitatory top-down processes that might

arise from attention or expectation (red arrows, Figure Ia; red ovals,

Figure Ib).

1. Top-down facilitation could occur during the anticipatory proces-

sing phase, before stimulus onset. Under the framework of the

decision model depicted in Figure I, this would be reflected in a

higher level of prior evidence for stimulus presence over absence,

that is, a higher starting point for the evidence collection process

(Figure Ib: height of red oval 1 on the dashed line). This would lead

to faster reaction times because evidence collection begins closer

to the bound. Neurophysiologically, this might be reflected in

enhanced rates of baseline firing in neurons tuned to the

anticipated feature or location.

2. Facilitation could occur at an early phase of sensory processing,

before combination of the sensory evidence with performance-

limiting internal noise. This manipulation would enhance the gain

of evidence accumulation (‘contrast gain’) and increase the signal-

to-noise ratio. In the model, this would be reflected by a steeper

slope to the accumulation process. Neurophsyiologically, this

might be reflected in sharper tuning curves for neurons tuned to

attended features.

3. Facilitation following the addition of internal noise (‘response

gain’). In the decision model, this would be captured by an

increased upward drift of the signal+noise trace (Figure Ib: blue

line). Although this would hasten reaction times, as evidence

would reach the bound faster, it could also lead to more erroneous

detections (‘false alarms’), because noisy signals would also be

enhanced. Neurophysiologically, this might lead to an upward

scaling of responses across the tuning curve of a neuron, without

increasing sensitivity to its preferred feature.

4. Top-down mechanism could leave perception unaltered, but lower

the criterial level of evidence needed for a decision to be made

(‘response bias’). Reaction times would be shorter, because less

evidence would need to be accumulated before the bound were

breached. In situations of multiple choices (and bounds), this

would lead to an increased tendency to favour speed over accuracy

(unlike 1, above).

Neurophysiological studies have described evidence that top-

down attention can enhance baseline firing rates [62–64], sharpen

neuronal tuning towards task-relevant stimulus features [65,66] and

scale up neuronal response curves [67,68]. These findings suggest

that attention could impinge on perceptual decision-making via

mechanisms 1, 2, and 3. Two recent articles provide excellent in-

depth review (and integrated quantitative accounts) of this issue

[69,70]. Although there is evidence that prior learning might

modulate gain control in neurons in the prefrontal cortex [71], little

is known about how perceptual decisions might be biased by

expectations.

Figure I. Both attended and expected stimuli are responded to more rapidly than their unattended or unexpected counterparts. To help understand possible

mechanisms underlying these effects, we consider the evolution of a perceptual decision across a representative trial in a detection task (a). The epoch considered

encompasses anticipatory processing of the stimulus before its onset, stimulus presentation (dashed line by eye symbol) input to perceptual regions, perceptual

processing and transfer to higher regions responsible for decision-making and response selection, and finally execution (dashed line by hand symbol). For a related

account, see [72]. Concurrently, we describe a simple model of how perceptual decisions are made (b), in which evidence (y-axis) is accumulated serially and

stochastically across time (x-axis) towards a decision threshold or ‘bound’ (thin black line). This model is related to classic descriptions of the decision process, reviewed

in [73]. The slope of the accumulation process (thick black line) reflects the rate at which evidence can be accumulated; the blue line reflects an example trial, in which

both signal and noise contribute to perceptual decision-making.
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and those of visual attention. Expectation facilitates visual
perception by constraining interpretation on the basis of
prior likelihood, whereas attention alleviates compu-
tational burden by prioritizing processing of that subset
of visual information deemed to be of the highest relevance
to the organism’s goals [10]. Thus, attention is directed
endogenously (‘top-down’) to favour processing of features,
404
objects, or spatial locations that are associated with a task
goal, reward, or potential danger [2,11], and attention is
attracted exogenously (‘bottom-up’) towards stimuli of high
physical salience, such as sudden motion [12]. Critically,
the motivational considerations that guide attention are
in principle orthogonal to the perceptual regularities
that guide visual expectations - although in practice,



Figure 1. Frontal contributions to perceptual inference. (a) In this fMRI study [28],

subjects were presented with randomly intermixed degraded and masked (masks

not shown) images of faces, houses, and cars, tailored to each individual’s

perceptual threshold. Via two response buttons, subjects were required to indicate

whether the current stimulus was a face or not a face (in ‘face set’ blocks), or

whether the current stimulus was a house or not a house (in ‘house set’ blocks).

Thus, while the perceptual input was kept identical across blocks, the task

encouraged subjects to employ distinct top-down perceptual sets (or templates) in

the two block types, one for detecting face stimuli, and one for detecting house

stimuli. Contrasting face with non-face stimuli (irrespective of set type) revealed

stimulus-driven activation in core regions of the face processing network,

including the inferior occipital gyrus (IOG), fusiform face area (FFA), and

amygdala (amyg), whereas face set-related activity (irrespective of stimulus type)

was observed prominently in the ventral medial frontal cortex (vMFC) (data not

shown). (b) Dynamic causal modeling [74] revealed that during face set blocks (as

compared with house set blocks), the vMFC displayed enhanced top-down

effective connectivity with the amygdala and FFA, while both face stimuli and

face set affected bottom-up connectivity from the IOG to the FFA and amygdala.

These data support the notion that ventral frontal regions might provide top-down

perceptual ‘priors’ to posterior regions, where these predictions are matched

against incoming sensory information. Adapted, with permission, from Ref. [28].
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expectations and attention often coincide and interact. For
example, learned perceptual context can guide attention
towards a likely location of a behaviourally relevant item
[13] (even unconsciously [14]), and the violation of a per-
ceptual expectation might be employed as a signal for
attracting attention towards a potentially significant event
[15]. Conversely, attention facilitates the formation of
stimulus–stimulus associations [16], and a modicum of
attentional resources might in fact be a prerequisite for
the acquisition of contextual knowledge [17,18]. Regard-
less of these conceptual distinctions, it is particularly
noteworthy that the behavioural effects of expectation
and attention are superficially identical; both attended
and expected stimuli are detected and recognized more
readily than unattended or unexpected. The exact mech-
anisms underlying this facilitation, however, remain sub-
ject to ongoing debate (Box 1). Given the similarity of their
facilitative effects on object recognition, the question arises
as to whether expectation and attention might share
neural mechanisms, discussed next.

Neural sources of expectation
A natural way of understanding the role of expectation in
visual cognition is as a ‘top-down’ process, in which prior
information, perhaps stored in higher brain regions, feeds
back to modulate basic perceptual processing in sensory
cortices. This conceptualization has close contact with
that of top-down attentional biasing. However, while
the major sources of top-down attentional biasing have
long been located principally (although not exclusively) in
the dorsolateral prefrontal and posterior parietal cortices
[19], only recently have attempts been made to identify
the sources of expectation during object recognition. Intri-
guingly, the emerging evidence suggests that the neural
origins of contextual biasing signals lie more medially in
the posterior cortices as well as more ventrally in the
frontal lobe than those of attentional biasing. For
example, parahippocampal and retrosplenial zones seem
to encode information about visual scenes that might
prompt object recognition [20] and these regions are
activated by objects that have strong relative to weak
contextual associations [21]. Pioneering work by Bar and
colleagues has emphasized the role that the orbitofrontal
cortex (OFC) might play in ‘top-down’ object recognition
[22,23], arguing that during scene perception, a rapid
extraction of low-level, low spatial frequency information
might be fed to the OFC, where associative information
allows the formation of a predictive ‘initial guess’ about
what objects or elements are likely in the scene [24]. This
information is then fed back to the extrastriate visual
cortices to bias recognition towards contextually congru-
ent objects. This account draws support from a variety of
literatures, including the reports of very early, scene- and
object-related potentials over the frontopolar cortices
[25], models of the OFC as a heteromodal nexus for
stimulus–stimulus associations [26], and the long-stand-
ing implication of frontopolar regions in retrieval of infor-
mation from long-term memory [27]. Empirical support
has also been provided by brain imaging studies using
functional connectivity techniques, revealing a uni-
directional flow of information from the medial OFC to
the visual cortices during categorization of degraded face
images [28] (Figure 1) and perception of low-frequency
objects [29].

Neural effects of expectation in visual cortex
A large electrophysiological literature has documented
that top-down attention acts by enhancing the responsivity
of sensory neurons that code for a motivationally relevant
feature, object or location [11], leading to an increase in the
neural activity elicited by an attended relative to an unat-
tended stimulus, although the precise nature of this modu-
lation remains controversial (Box 1). Given that attention
and expectation have similar facilitatory effect on visual
object recognition, one might anticipate that expected
(relative to unexpected) stimuli would also be associated
with enhanced sensory responses. However - strikingly -
the opposite is in fact typically the case: expected stimuli
tend to elicit reduced visual responses, relative to their
405



Figure 2. Predictive coding in visual perception. Predictive coding [40,41,43] argues that perception unfolds as expected and observed information are gradually reconciled,

via iterative interactions within a hierarchically organised sensory system. Here, this hierarchy is shown schematically, with grey panels representing the passage of

sensory information between distinct sites (yellow dots on an axial slice of the brain) stretching from primary to higher association cortex. The key elements of the scheme

as described in [43] are (i) two functionally distinct classes of neurons. Representation units (R) (lower white boxes) encode expectations about what is possible or likely in

the coming sensory world. Error units (E) (upper white boxes) are driven by sensory input from the preceding layer of the hierarchy (blue arrows). (ii) Predictions are

‘subtracted’ from E unit responses; surprising events elicit larger neuronal responses. (iii) R unit predictions are updated on the basis of the mismatch between expected

and observed information. Both (ii) and (iii) depend on local circuit interactions (dashed red arrows) occurring via many-to-many interactions between individual nodes

(grey ellipses; for simplicity, only two are shown). (iv) Resultant predictions in turn are used as priors for the preceding layer (red arrows). A related account has been

described elsewhere [41,42].
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unexpected counterparts [30,31], and an extensive litera-
ture has documented the corresponding phenomenon in
the auditory domain in the form of the ‘mismatch nega-
tivity’ event-related potential [32]. In line with these find-
ings, recent neuroimaging studies employing formal
measures derived from information theory [33], or
reinforcement learning [34], have documented increased
visual cortical responses to visual surprise. Unfortunately,
an unambiguous characterization of expectation effects at
the level of single neurons is currently lacking in the
literature (but see the section ‘Is there evidence for error
and representation neurons?’, below, for a discussion of
suggestive evidence). One possible interpretation of the
event-related potential and neuroimaging results is that
unexpected stimuli evoke stronger responses than
expected ones because they attract attention. However,
attentional effects alone are unlikely to account for these
data. First, many experiments have demonstrated sensory
responses to expectancy violations in a task-irrelevant
stimulus stream, while attention was occupied elsewhere
[35–37]. Second, the differential response between
expected and unexpected stimuli is not solely a function
of enhanced activity evoked by the unexpected stimulus,
but is substantially driven by accumulative decreases in
the response to stimuli that conform to expectation [38,39].
If attention is not responsible for the enhanced neural
responses to unexpected relative to expected stimuli, what
could be the mediating mechanism?

Predictive coding models of visual expectation
Models of visual attention are concerned with explaining
the enhancement of neural responses to attended relative
to unattended stimuli (Box 1). As described in the previous
section, the effects of expectation on visual responses,
however, exhibit the exact opposite pattern. A class of
models aimed at explaining the effects of prior knowledge
on visual perception offers an intriguing explanation for
these neuroscientific findings. The formal quantitative [40]
and computational [41–43] framework known as ‘predic-
406
tive coding’ proposes that information flowing forwards
through a hierarchy of sensory regions is met at each stage
by a top-down ‘prediction’ projected back from the layer
immediately above (Figure 2). Neural implementations of
this framework assume that there are two interacting
classes of sensory neurons at each level of the visual
processing stream. Representational neurons (R units)
encode conditional (context-dependent) expectations about
the identity of a stimulus and project their predictions to
the next lower level of the processing hierarchy. These
units are complemented by error neurons (E units) that
encode ‘prediction error’ when the expected and observed
sensory information diverge, and pass this error message
to the R units, where predictions are updated accordingly
(these proposed error units represent a sensory equivalent
to the well-studied dopaminergic reward prediction error
neurons of the midbrain [44]). Predictive coding argues
that perceptual inference proceeds as expected and
observed information are iteratively reconciled across
multiple levels of the visual processing hierarchy, resulting
in a progressive reduction in prediction error as the visual
system settles on a single perceptual interpretation of the
sensory input. Importantly, the proposal of co-existing
representational and error neuron populations provides
a natural account for the observation that cortical
responses scale with sensory surprise: when stimulation
conforms to expectations, error neuron activity will be
minimal, but when sensory evidence diverges from predic-
tions, error units will respond vigorously.

Indirect support for predictive coding includes the
realization that the spatial range over which contextual
effects in visual detection (such as facilitation by colinear
flankers) have been observed precludes a mechanism that
relies exclusively on lateral interactions among neurons in
a given cortical stage (for example, via horizontal connec-
tions within V1). Rather, these effects - and ‘extra-classical’
receptive field (RF) effects, where the response properties
of a neuron aremodulated by information falling beyond its
classical RF - can only be explained by feedback from



Figure 3. Expectations and prediction error responses in the ventral visual stream.

(a) In a recent study [49], subjects matched the orientation of contrast-modulated

Gabor patches to target line orientations. In one condition (A/B task), matching was

performed as a two-alternatives forced-choice discrimination, where subjects

decided which of two target line orientations (red and blue lines) was matched by

the current grating (top panel). This condition encourages an unbiased evidence

accumulation process [75]. In a second condition (A/�A task), gratings were judged

in reference to a single target orientation line (green line), resulting in matches and

non-matches (bottom panel). This condition invokes a biased evidence

accumulation process, where subjects employ the target line as a perceptual

template (a ‘prior’ or expectation) against which to match incoming evidence [40].

(b) Regions in bilateral inferior temporal gyrus (in red, bottom left) displayed visual

prediction error responses, reflected in higher fMRI activity in the A/�A non-match

condition, where the stimulus violated the prior, than during matches in the A/�A

and the A/B task. Regions in the fusiform gyrus (in blue, bottom right) represented

prior expectations, displaying higher responses in both conditions of the A/�A task

(where a perceptual prior is employed) than in the A/B task. Adapted, with

permission, from Ref [49].
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subsequent cortical stages [41,45]. Furthermore, inacti-
vation of higher extrastriate visual regions (such as V5)
alters the response properties of neurons in lower regions
(such as V1), and impairs perceptual inference, for example
during figure/ground segmentation [46]. Predictive coding
also makes some counter-intuitive predictions that have
been borne out by recent empirical work. One intriguing
implication of this scheme is that the omission of an
expected stimulus should elicit a (prediction error)
response in sensory cortex; this hypothesis has been con-
firmed in a elegant brain imaging experiment, in which
subjects learned task-irrelevant, probabilistic audio–

visual associations [34]. fMRI responses in V1 to unex-
pected visual stimuli were greater than to expected visual
stimuli, but were largest in trials where a visual stimulus
was predicted by an auditory cue, but did not occur. Similar
results have been obtained in the auditory modality [47].
Finally, predictive coding holds that if higher sensory
regions are able to ‘explain’ a perceptual input, activity
elicited by this input in lower regions should be reduced (or
‘explained away’). This prediction has also been confirmed
[48]. For instance, activity in V1 is reducedwhile activity in
LOC is enhanced when viewing line elements arranged in
coherent shapes compared with when the same elements
are arranged randomly [48]. Another recent fMRI study
providing support for predictive coding [49] has described
dissociable visual regions that respond to the presence of
‘prior’ information (when a visual expectation is engen-
dered) and to ‘prediction error’ (when that expectation is
violated) (Figure 3).

How can expectation and attention be integrated?
Predictive coding provides a parsimonious account of the
neural signature of visual expectations, but how can the
effects of top-down attention be accommodated in this
scheme? This question provides amajor challenge to visual
neuroscience, but only few theoretical proposals have been
put forward thus far and, to our knowledge, not a single
empirical study has manipulated attention and expec-
tation orthogonally and assessed the resulting effects on
visual responses. One proposal has attempted to reconcile
top-down mechanisms of expectation and attention, by
merging predictive coding [41] with standard accounts of
attentional biasing under a common computational frame-
work [43]. Under this scheme, visual neurons receive top-
down input that facilitates their responding, but rather
than competing for processing resources via lateral inhi-
bition as previously proposed [50], these neurons (R units)
compete for inputs from a distinct population of neurons
[51] that in turn receive feedforward input from the
immediately preceding cortical or thalamic level - akin
to the error neurons (E units) in the predictive coding
scheme (Figure 2). Because top-down information upregu-
lates responding in R units, the model accounts for a range
of data describing single neuron responses to attended and
unattended features and locations [52]. Critically, how-
ever, the iterative interactions between R and E units
preserve the main tenet of predictive coding, that predic-
tions are ‘subtracted’ away from observed sensory input via
feedback from representation to error neurons [40]. Theor-
etically, thus, visual ‘surprise’ responses could be
accounted for as the responses of these E units to unex-
pected stimuli. However, it has yet to be reported whether
the model can account for data from experiments that
manipulated contextual expectations, or expectation and
attention simultaneously. It is therefore currently not clear
whether (and how) this scheme, which in its current form
treats expectation and attention as interchangeable top-
down influences on visual neurons, could reproduce the
seemingly distinct effects of expectation and attention at
the level of neuronal populations discussed in the previous
section.

Is there evidence for error and representation neurons?
This account [43], and related computational models [42]
could yet offer a fruitful path to understanding why visual
407



Box 2. Outstanding questions

� How do behavioral and neural effects of expectation and attention

relate to each other when these factors are manipulated

independently in a single experiment?

� What is the precise mechanism (or mechanisms) by which

expectations affect perceptual decision-making (Box 1)?

� Do dedicated ‘prediction error’ neurons exist in sensory cortices?

� Where might expectation-related codes reside in the brain?

� To what degree are neural and behavioral effects that have

traditionally been attributed to attention (for example, in prob-

abilistic cueing paradigms) confounded by perceptual expecta-

tions?

Review Trends in Cognitive Sciences Vol.13 No.9
regions seem to respond to both attended, and yet also to
unexpected, visual stimuli. However, one limitation of
these models - and of predictive coding in general - is that
to date no single-neuron study has systematically pursued
the search for sensory prediction error responses. Never-
theless, indirect evidence exists that both representational
and error responses might be observed in visual regions.
First, some early single-neuron work identified extrastri-
ate visual neurons that responded to orientations that
were ‘matches’ or ‘mismatches’ to a cued target orientation
[53–55]. These ‘match’ neurons additionally responded to
the instruction cue designating the target orientation, even
when it was presented in a nonvisual modality [54]. This
behaviour seems strikingly like that of the proposed
representation (match) and error (mismatch) neurons pro-
posed by predictive coding (see also Figure 3), but contex-
tual expectations were not formally manipulated in these
studies. Second, single neurons in the visual cortex have
been identified that display robust adaptation effects [56].
Adaptation might reflect neuronal fatigue or sharpening
[57], but could also reflect the dampening of surprise
responses in error neurons to the second or subsequent
presentation of a stimulus [40,58]. Other, more recent
studies have emphasized that pyramidal cells and inter-
neurons in V1 might make distinct contributions to atten-
tional biasing (showing enhanced responses to a preferred
stimulus and suppressed responses to competitors,
respectively [59,60]), but there is as yet no evidence that
their responses map onto those of the proposed R and E
units. Clearly, additional work is required to understand
the local circuit interactions that give rise to visual ‘sur-
prise’ responses alongside more classically described
modulations by attention. Important steps towards realiz-
ing this goal will require a careful characterization of
visual responses under conditions where expectations
and attention are orthogonalized.

Moreover, despite its apparent success in explaining a
range of neurophysiological phenomena, predictive coding
can be criticized on a number of grounds. First, the sheer
speed at which object recognition can occur might preclude
a slow, iterative resolution of object identity via local
circuit interactions in the visual cortex [22,25]. Second,
researchers have noted that linear models of recognition
based on subtractive, match–mismatch interactions might
become catastrophically unstable [61], and a divisive var-
iant of predictive coding, in which observed sensory evi-
dence is normalized by expectations, might be a more
plausible alternative [52].

Conclusions
We have reviewed recent advances in understanding a
traditionally neglected aspect of top-down biases on visual
processing, namely, the use of perceptual expectation to
contextually bias the accumulation and interpretation of
visual information. This literature suggests that fulfilled
expectations are associated with facilitated object recog-
nition but attenuated neural responses; predictive coding
models provide an elegant theoretical account for these
effects. A central goal of the current review was to empha-
size similarities and distinctions between expectation and
top-down attention, in particular because these processes
408
might often be conflated in studies of attention. The above
survey of their paradoxical behavioural and neural effects
reinforces the importance of carefully distinguishing be-
tween expectation and attention in experimental design
and interpretation: for instance, when attention and expec-
tation toward a target stimulus coincide, both processes
will contribute to behavioural benefits in stimulus recog-
nition, but they will exert opposing effects on neural
activity in visual regions representing the stimulus. How-
ever, the detailed nature of these interactions between
expectation and attention is not currently understood, as
modelling work on this topic in its infancy, and experimen-
tal data are scarce (for some particularly pressing ques-
tions, see Box 2). We hope that this review serves to
stimulate additional interest in pursuing an improved
understanding of this important and exciting issue.
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