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Abstract

■ A central goal in neuroscience is to interpret neural activation
and, moreover, to do so in a way that captures universal princi-
ples by generalizing across individuals. Recent research in multi-
voxel pattern-based fMRI analysis has led to considerable
success at decoding within individual subjects. However, the
goal of being able to decode across subjects is still challenging:
It has remained unclear what population-level regularities of
neural representation there might be. Here, we present a novel
and highly accurate solution to this problem, which decodes
across subjects between eight different stimulus conditions.
The key to finding this solution was questioning the seemingly

obvious idea that neural decoding should work directly on neu-
ral activation patterns. On the contrary, to decode across sub-
jects, it is beneficial to abstract away from subject-specific
patterns of neural activity and, instead, to operate on the simi-
larity relations between those patterns: Our new approach per-
forms decoding purely within similarity space. These results
demonstrate a hitherto unknown population-level regularity in
neural representation and also reveal a striking convergence
between our empirical findings in fMRI and discussions in the
philosophy of mind addressing the problem of conceptual sim-
ilarity across neural diversity. ■

INTRODUCTION

In cognitive neuroscience, the goal is, in general, not to
study the peculiarities of particular individualsʼ brains
but, instead, to find regularities that hold across individ-
uals at the population level. An obstacle to that goal is the
fact that different peopleʼs brains do not directly match
up. They share the same gross anatomy and also share
coarse-grained functional distinctions, for example, be-
tween animate and inanimate object categories (Martin,
2007; Caramazza & Shelton, 1998; Warrington & Shallice,
1984) such as faces and houses (Epstein & Kanwisher, 1998;
Kanwisher, McDermott, & Chun, 1997; McCarthy, Puce,
Gore, & Allison, 1997). However, at a finer grain, there
are diverse individual differences: For example, the size
of V1 in different people can vary by a factor of more than
two, and this size variability has perceptual consequences
(Duncan & Boynton, 2003). At the level of specific neural
representations, pattern recognition algorithms have been
used to find the multivoxel neural “fingerprints” elicited by
given stimulus conditions (Raizada & Kriegeskorte, 2010;
Pereira, Mitchell, & Botvinick, 2009; Haynes & Rees,
2006; Norman, Polyn, Detre, & Haxby, 2006; Haxby
et al., 2001). However, just as the literal fingerprints on
peopleʼs hands are idiosyncratic to individuals, the “neural
fingerprints” of representations in their brains may also be
subject-unique. Indeed, this has been found to be the case.

For example, Shinkareva, Mitchell, and colleagues per-
formed both within- and across-subject decoding and
found that “a critical diagnostic portion of the neural repre-
sentation of the categories and exemplars is still idiosyn-
cratic to individual participants” (Shinkareva et al., 2008).
Whatever commonality there might be between differ-

ent peopleʼs neural representations, it must somehow ab-
stract away from their subject-specific finer-grained neural
patterns. Can we find a level of representation that is
shared across individuals and that is fine-grained than
animate-versus-inanimate but that, unlike subject-specific
neural fingerprints, succeeds in capturing across-subject
commonalities? A shared level of representation that satis-
fies these conditions would be able to bridge between dif-
ferent peopleʼs neural representational schemes. In other
words, it would be able to perform across-subject neural
decoding.
A potentially promising candidate level of representa-

tion is similarity space, which is the set of pairwise rela-
tions between items defined by a similarity measure and
which has long served as a powerful tool in psychology for
investigating cognitive processing (Edelman, 1998; Medin,
Goldstone, & Gentner, 1993; Tversky, 1977; Shepard,
1962). In the neural domain, it has been used for visual-
izing and comparing overall representational structure
(Connolly, Gobbini, & Haxby, 2012; Shinkareva, Malave,
Just, & Mitchell, 2011; Kriegeskorte et al., 2008; OʼToole
et al., 2007; Hanson, Matsuka, & Haxby, 2004; Edelman,
Grill-Spector, Kushnir, &Malach, 1998). However, in seeking1Cornell University, 2Dartmouth College
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to decide whether different peopleʼs representational
schemes are the same, we need to be able to do more than
visualize the broad overall match between them. We need
to be able to bridge between the different sets of represen-
tations, that is, to perform across-subject neural decoding.
However, until now, no method of neural decoding using
similarity space has been available.
In all previous work on neural decoding, the inputs to

the decoding algorithms have not been similarity values
but, instead, have been neural activation values themselves
(e.g., Pereira et al., 2009; Haynes & Rees, 2006; Norman
et al., 2006; Haxby et al., 2001). However, at a fine grain,
these neural activation patterns suffer from the subject-
specific idiosyncrasies described above. Across-subject
decoding of fine-grained neural representations has there-
fore remained a challenge.
It might seem almost too obvious to be worth stating

that neural decoding should take neural activation patterns
as its input. Here, we argue that the seemingly tautological
nature of that statement is deceptive. On the contrary,
we argue that effective decoding across subjects can be
achieved without using neural activation patterns as input.
Instead, the similarity relations between those patterns
may be used as input rather than the neural patterns them-
selves. By operating on the similarity relations, the decoding
can abstract away from the idiosyncratic and subject-specific
nature of the neural activation. To support this claim, we
present for the first time a method to perform neural de-
coding purely within similarity space. We then demonstrate
that this method achieves highly accurate across-subject
decoding.

METHODS

For the analyses in this article, we used the classic Haxby
et al. (2001) data set of object-elicited activation in ventral
temporal (VT) cortex, kindly made available on-line by
Haxby and the developers of PyMVPA (pymvpa.org/datadb/
haxby2001.html). The VT cortex ROIs in that study are in-
cluded in the on-line data set and weremanually traced from
anatomical scans to consist of the lingual, parahippocampal,
fusiform, and inferior temporal gyri. The neural similarity
space for each subject was calculated simply as the spatial
correlation between the various stimulus-conditions̓ activa-
tion patterns across VT cortex. The stimulus categories
spanned the animate-versus-inanimate distinction but also
included a lower level of multiple animate and inanimate sub-
categories. The animate stimuliwere subdivided into cats and
faces, and the inanimate stimuli were subdivided into bottles,
chairs, houses, scissors, scrambled pictures, and shoes.
We first calculated the VT cortex neural similarities be-

tween these eight stimulus conditions for each of the six
subjects. The similarity measure was the simplest possi-
ble: spatial correlation. Before this pattern correlation
step, the voxel time courses were first normalized in in-
tensity by being z-scored, that is, by having their mean

values subtracted and being divided by their standard de-
viations. To avoid normalizing out potentially informative
stimulus-evoked signals, these means and standard devia-
tions were calculated from the rest-condition blocks only.
Such normalization is standard for pattern-based fMRI
analyses (Pereira et al., 2009) and, indeed, for machine-
learning studies in general (Han & Kamber, 2006). It is
particularly useful for correlation-based analyses, which
would otherwise tend to be corrupted by outlier intensity
values.

In Figure 1, we present and explain our novel method,
simple but highly effective, for performing neural decod-
ing purely within similarity space. Using our new method,
which we call “decoding by matching of similarity spaces”
or DEMOSS, we show here for the first time that similarity
space is indeed able to decode between different peopleʼs
neural representations. We also show that peopleʼs shared
representational structure goes beyond the animate-versus-
inanimate distinction and extends to the fine-grained level of
multiple animate and inanimate subcategories. Moreover,
we demonstrate below that, by operating purely within sim-
ilarity space, this across-subject decoding remains accurate
even in the presence of a high degree of neural diversity.

Our analysis code was written in Matlab, and the pre-
processing and data extraction were carried out in Python
using scripts from PyMVPA (Hanke et al., 2009). To facil-
itate easy replication and verification of our results, all
of the analysis code is provided in the Supplementary
Information.

RESULTS

Visualization of Overall Similarity Structure Leaves
It Unclear whether Decoding Can Be Achieved

As was remarked in the Introduction, neural similarity
space has previously been used for visualizing and com-
paring overall representational structure by combining it
with multidimensional scaling (MDS; Shepard, 1962).
Examples of such studies include Connolly et al. (2012),
Shinkareva et al. (2011), Kriegeskorte et al. (2008),
OʼToole et al. (2007), Hanson et al. (2004), and Edelman
et al. (1998). However, until now, no method for using
similarity space to perform neural decoding has been
available. Given the existence of these visualization stud-
ies, it is reasonable to ask whether visualization alone is
sufficient to judge whether neural decoding could be
performed.

In Figure 2, we show 2-D MDS projections of each in-
dividual subjectʼs neural similarity space in the Haxby
et al. (2001) data set. Some broad commonalities are
readily apparent: Houses and scrambled pictures always
stand apart from the other stimuli, and bottles, shoes,
and scissors typically cluster together. But it is unclear
whether these commonalities are sufficient to allow
across-subject decoding. Categories that cluster together
in some subjects are quite dissimilar in others (e.g., faces
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and cats are muchmore similar in Subjects 1, 2, and 3 than
they are in Subjects 4, 5, and 6). Given this, one might
expect that a similarity-based decoding would be able
to distinguish between faces and cats in the first three
subjects but would confuse the two stimulus categories
in the remaining three. As we show below, this is not in
fact the case: Our similarity-based decoding did not con-
fuse those two categories. The amount of variability
across different peopleʼs category clusterings means that
the visualization, on its own, does not tell us whether
an attempt to decode the stimuli across subjects would
succeed or fail.

Accurate Across-subject Decoding of Fine-grained
Object Categories in VT Cortex

We used our new DEMOSS method, shown in Figure 1,
to perform across-subject decoding of the Haxby data.
With eight categories per subject and six subjects, there
were 48 decodings to perform in all. The method scored
91.7% correct (44 of 48 categories correct). Software to
replicate these analyses is provided in the Supplementary
Information.
If the animate-versus-inanimate distinction were the level

at which different peopleʼs neural representational schemes

Figure 2. The neural similarity
spaces of each of the six
subjects in the Haxby et al.
(2001) data, visualized in 2-D
using MDS (Shepard, 1962).
Although some broad
commonalities are readily
apparent, there are also major
intersubject differences. Such a
visualization, therefore, leaves
it unclear whether similarity
space can bridge between
different peopleʼs neural
representations. To directly
test that, we need to see
whether similarity space
enables across-subject
decoding.

Figure 1. Our novel method of across-subject neural decoding: DEMOSS. The data entered into the model for each subject consists only of the
values in their 8 × 8 similarity matrix, constituting 8 × (8 − 1)/2 = 28 unique numbers. Only one permutation-matching computation is performed
per subject, so there are no multiple comparisons. The illustrated similarity matrices are the actual data for the example subject shown.
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are the same, then it would be predicted that across-subject
decoding should succeed at that level but fail at lower levels
in the hierarchy. In contrast, if different peopleʼs neural rep-
resentational schemes are the same not only at the animate-
versus-inanimate level but also at lower subdivisions of the
hierarchy, then across-subject decoding would be predicted
to succeed even at making distinctions between fine-grained
subcategories, for example, at distinguishing between differ-
ent animate categories (faces vs. cats) and between different
inanimate categories (e.g., bottles vs. shoes).
The latter prediction held true: The decoding was highly

accurate at distinguishing between fine-grained animate
and inanimate subcategories. Within the animate sub-
division, decoding was 100% correct: A face was never con-
fused with a cat. The more difficult decoding task was
within the inanimate subdivision, in which some errors
were made; five of the six subjects had all six of their in-
animate categories perfectly decoded, and the remaining
subject had two pairs of confusions: bottle–scissors and
shoe–chair. However, decoding between inanimate sub-
categories was far above chance (32 of 36 correct decod-
ings, i.e., 88.9% correct). Chance-level performance is to
get one eighth of the decodings correct, that is, 12.5%.

Decoding Remains Accurate Even across
Widespread Neural Diversity

The success of this across-subject decoding shows that
neural similarity space captures a representational scheme

that is shared across individuals, even at the fine-grained
level of multiple animate and inanimate subcategories.
However, as was noted in the Introduction, one of the
main sources of difficulty for across-subject neural decod-
ing is the fact that different peopleʼs brains do not directly
match up. In the analysis above, that difficulty was not felt
with its full force because all of the neural signals were
drawn from the same brain area: VT cortex.

As Figures 3A and C shows, VT cortex masks drawn by
Haxby et al. on individual subjectsʼ anatomical scans do
not completely overlap when they are aligned to a com-
mon space, but they do mostly overlap. A stronger test
would, therefore, be to use anatomically dispersed and
highly variable sets of voxels in different individuals.

To carry that out, we devised a simple feature-selection
scheme to find informative voxels within each individual
subject. For each voxel, we calculated two measures to
be used for selection. Comparing all of the visual object
stimuli together against the rest blocks, we determined
the t statistic for the degree to which each voxel was
active. Then, considering only the object stimuli blocks,
we calculated the F statistic of the ratio of between-class
variance to within-class variance. We then selected the
voxels within each subject that scored not only in the top
5% of t values but also in the top 5% of F values, that is, the
voxels that were active and that differentiated between the
various object stimuli. As before, the neural similarity
space for each subject was calculated simply as the spa-
tial correlation between the various stimulus-conditionsʼ

Figure 3. Maximum intensity
projections and histograms
showing differing degrees of
across-subject neural diversity.
(A, C) When the voxels used
for across-subject decoding
were specified by the VT cortex
masks included in the Haxby
data set, the performance was
91.7% correct. However, there
was relatively little neural
diversity across different
peopleʼs VT masks. (B, D) In
a separate analysis, we used
a simple feature-selection
scheme to find different sets
of informative voxels within
each individual subject. The
selected voxels were
anatomically dispersed and
highly variable across different
individuals. Nonetheless, using
these diverse sets of voxels,
the across-subject decoding
still achieved 87.5% correct.
Chance-level performance
is 12.5%.
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activation patterns, but this time, the patterns were the
activations across the selected voxels rather than across
the VT cortex region. (Matlab scripts used to perform this
feature selection and to carry out the similarity analyses
on the selected voxels are provided in the Supplementary
Information). To compare the locations of the selected
voxels across different subjects, the brain volumes were
all spatially normalized to the standard MNI-152 template
at 3 × 3 × 3 mm resolution using SPM8, before feature
selection or similarity analysis was carried out.

These feature-selected voxels showed a very high degree
of diversity across subjects: The number of voxels selected
within each subject ranged from 473 to 1346. In other
words, the dimensionalities of peopleʼs neural activation
spaces varied widely across different individuals. It is un-
clear even how to compare a 473-dimensional space with
a 1346-dimensional space, let alone to try to decode be-
tween them. However, by calculating the spatial correla-
tions between the stimulus-elicited activation patterns
within each activation space, the different subjects̓ activa-
tion spaces, with their widely varying dimensionalities, all
become transformed into eight-dimensional similarity
spaces defined by the eight stimulus categories. These
similarity spaces can be compared, and using our novel
DEMOSS method presented in Figure 1, we can perform
across-subject decoding between them.

Different peopleʼs selected voxels varied not only in
their number but also in their locations across the subjectsʼ
brains. As Figures 3B and D shows, the selected voxels
were dispersed broadly throughout the brain, and their
anatomical locations were highly variable across subjects.
As would be expected, the greatest concentration of se-
lected voxels was found in VT cortex; however, informative
voxels were found inmany other regions, including parietal
and frontal cortex. The selected voxel locations in those
areas were often shared by just one or two subjects, as
can be seen from the light-gray regions in the maximum in-
tensity projection in Figure 3B. The histogram in Figure 3D
confirms that the majority of selected voxel locations were
specific to individual subjects and that very few voxel loca-
tions were shared by multiple individuals. As it happened,
there was not a single voxel that was selected in all six
subjects, not even in the heart of VT cortex.

To what degree would neural decoding be able to suc-
ceed in the face of this very marked neural diversity? Using
the similarity spaces derived from these disparate sets of
feature-selected voxels, the performance of across-subject
decoding was 87.5%, only slightly lower than the 91.7%
obtained when the voxels were specified by VT cortex
masks. Four of the six subjects were decoded perfectly.
In one subject, there were four confusions: cat, chair, face,
and scissors. In the remaining subject, bottles and scissors
were confused. As before, chance-level performance is
12.5%. Thus, similarity space was able to capture the repre-
sentational scheme shared across individuals, although the
neural populations used to match peopleʼs representations
were extremely diverse.

Decoding Works Best in VT Cortex Compared
with Other Areas

In the analyses in the preceding sections, we have shown
two results: First, accurate across-subject decoding can
be achieved by matching neural similarities derived from
an anatomically defined VT cortex ROI. Those VT cortex
voxels are shown in Figure 3A. Second, decoding remains
accurate even in the face of widespread neural diversity,
that is, when each subjectʼs neural similarities are derived
from subject-specific sets of selected voxels, shown in
Figure 3B.
However, those two results do not address the follow-

ing question: Are there other brain areas, apart from VT
cortex, that also allow successful across-subject decod-
ing? Might it perhaps be the case that the decodingʼs suc-
cess does not actually arise because of population-level
regularities in object recognition representations? For
example, if regions that are believed not to participate
in visual object recognition, such as auditory or somato-
sensory cortex, were found to produce neural similar-
ities yielding accurate across-subject decoding, then
some quite different interpretation of our results would
be required.
To test this, we performed our decoding using a full set

of cortical anatomical ROIs from the standard Harvard–
Oxford atlas (Desikan et al., 2006), which is distributed
with the FMRIB Software Library fMRI analysis package
(Smith et al., 2004). There are 48 bilateral cortical re-
gions in that atlas. Using voxels from each of those re-
gions in turn, we calculated neural similarities for all
of the subjects and applied our similarity-based across-
subject decoding, yielding an overall percentage-correct
score for each region. The results are shown in Figure 4.
Decoding accuracies ranged from 0% in the frontal oper-
culum to 77.1% in the temporal occipital fusiform cor-
tex. The inferior lateral occipital cortex also scored well
at 70.8% correct. As Figure 4 shows, the ventral visual
stream contained the most accurately decoding regions,
corroborating the hypothesis that it is indeed visual
object representations that are driving the decodingʼs
success.
The 77.1% score in temporal occipital fusiform cortex

shows that this region contains a great deal of information
about visual object representations and that the similarity
structure of those representations is highly conserved
across subjects. However, that score is markedly worse
than the accuracies obtained from spatially larger and
more distributed samples of cortical tissue, either the
entire VT cortex region (shown in Figure 3A and yielding
91.7% correct) or the diverse sets of voxels spread across
VT, parietal, and frontal regions (shown in Figure 3B and
yielding 87.5% correct). Thus, although the fusiform
region within VT cortex contains more robust object rep-
resentations than any other individual ROI, the represen-
tations distributed across broader expanses of cortex are
still stronger.
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Statistical Significance Tests for
a Permutation Distribution

Given that there are eight stimulus categories, the num-
ber of possible category labelings for each subjectʼs de-
coding is equal to the factorial of eight, that is, 40,320.
Only one of those more than 40,000 labelings gets all
eight out of eight labelings correct. It is therefore note-
worthy that this solitary perfect eight-out-of-eight label-
ing often emerged as the decoding output, in virtue of
its having a higher level of across-subject match in simi-
larity space than any of the other 40,000 labelings. That
eight-out-of-eight perfect decoding was achieved for five
of the six subjects when all of the neural information was
drawn from cortical area VT, and for four of the six sub-
jects when the neural information was drawn from anato-
mically dispersed and highly variable feature-selected sets
of voxels. For the subjects whose decoding was not
perfect, it was still significantly above chance. As the Sup-
plementary Information and its accompanying Matlab
code show, the chance level is to get one of eight correct
and to meet a significance of p < .05, three or more of
the eight categories need to be decoded correctly. In our
results, not only when decoding from VT cortex but also
when using the feature-selected voxels, no subjectʼs
decoding achieved fewer than four of eight correct. This
suggests that similarity space, even with its very simple

construction and greatly reduced dimensionality, does in-
deed succeed in capturing a crucial aspect of what differ-
ent peopleʼs representations have in common.

DISCUSSION

The results above demonstrate for the first time, using
real neural data, that similarity space can provide a decod-
ing between different peopleʼs representational schemes.
This across-subject decoding remains highly accurate
even when the neural similarities are derived from widely
diverse sets of voxels across different subjects.

Relation to Previous fMRI Studies

Previous across-subject decoding attempts have all in-
volved feeding thousands of voxels and hundreds of time
points into classifier algorithms, so it has remained un-
clear which aspects of the complex neural signal have
been the ones that different people shared. In contrast,
our new across-subject decoding method takes in an
extremely reduced data set as input: only the similarity
space of peopleʼs neural category representations. The
success of its decoding is therefore driven entirely by
across-subject commonalities in that abstract category-
similarity structure.

Moving from the nature of the input to questions of
performance, our study decodes fine-grained category
distinctions across subjects with high accuracy, whereas
previous studies have either decoded coarse-grained
changes in brain state or with lower accuracy or both.
An example of decoding a large-scale change in brain
state is distinguishing between the performance of differ-
ent behavioral tasks, such as reading a sentence versus
looking at a picture (Wang, Hutchinson, & Mitchell, 2003)
and face matching versus location matching (Mourao-
Miranda, Bokde, Born, Hampel, & Stetter, 2005), or be-
tween several different cognitive tasks (Poldrack, Halchenko,
& Hanson, 2009). A different example of a coarse-grained
distinction is between being rewarded with money versus
viewing an attractive face (Clithero, Smith, Carter, & Huettel,
2011). Shinkareva, Mitchell, and colleagues (Shinkareva
et al., 2008) went further and were able to decode not only
which general category of object a person was looking at
(tool vs. dwelling) but also which of the five specific exem-
plars within each category they were looking at. However,
their across-subject decoding, which operated directly on
neural activation, worked for only 8 of their 12 subjects
and achieved a considerably lower level of performance
than our approach, which operates instead on neural simi-
larities. Another interesting and important line of work in
this area is that of Haxby et al. (2011), who have proposed
a high-dimensional mapping called “hyper-alignment” of
one personʼs voxel space onto anotherʼs.

Following its initial publication (Haxby et al., 2001),
there have been a number of subsequent articles contain-
ing analyses of the Haxby et al. (2001) data. These prior

Figure 4. Across-subject decoding accuracies obtained from each
individual cortical ROI within the standard Harvard–Oxford anatomical
atlas (Desikan et al., 2006). It can be seen that ventral visual stream
contained the most accurately decoding regions, corroborating the
hypothesis that it is indeed visual object representations that are driving
the decodingʼs success.
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studies have performed within-subject voxel-wise sensitivity
analyses (Hanson et al., 2004), compared the performance
of classifiers applied to the image stimuli themselves against
that of classifiers applied to the neural data (OʼToole et al.,
2007; OʼToole, Jiang, Abdi, & Haxby, 2005), investigated
ICA (Daubechies et al., 2009), and explored the use of clas-
sifier ensembles (Kuncheva, Rodriguez, Plumpton, Linden,
& Johnston, 2010). Two of these Haxby data studies
(OʼToole et al., 2007; Hanson et al., 2004) used similarity
structure analyses to explore representational organization.
However, neither those studies nor any previous investiga-
tions of neural similarity space have used similarity space to
perform across-subject decoding. This across-subject de-
coding is a key contribution of our new approach, along
with what it tells us about peopleʼs shared hierarchy of
object representations and its ability to find the same repre-
sentations across highly diverse neural populations. Our
new approach also intersects with some longstanding con-
ceptual debates in cognitive science, as we discuss in the
following section.

Relation to Longstanding Conceptual Debates
in Cognitive Science

A striking aspect of the solution to across-subject decod-
ing presented above is its parallelism to a proposal made
more than 20 years ago by the neuro-philosopher Paul
Churchland (Churchland, 1986). Churchland proposed,
on purely theoretical grounds, that matched structure in
peopleʼs neural similarity spaces could explain how differ-
ent brains can form the same mental representations. He
referred to this as “the problem of conceptual similarity
across neural diversity” (Churchland, 1998).

However, that proposal has faced opposition, most
notably from Fodor and Lepore (1992, 1999) who argued
that similarity space theories cannot explain how different
people could possess the same concept. Partly in response
to such objections, researchers have presented computer
simulations as evidence that similarity space could indeed,
in principle, provide a solution (Goldstone & Rogosky,
2002; Laakso & Cottrell, 2000). However, no simulation
can address the question of how real brains actually do
solve the problem. Our results above, using real neural
data, do precisely that.

The question of whether the philosophy of mind is a
relevant part of cognitive science is far beyond the scope
of this article. We merely remark that when completely
different lines of inquiry, originating respectively from
conceptual and empirical concerns, end up converging
on the same solution, it may be an indication that they
are both being guided by something real.

How Generalizable Will Similarity-based Decoding
Turn Out to Be?

How robust and generalizable our proposed solution to
across-subject decoding will turn out to be is, of course,

an empirical question. This article presents its successful
decoding of the classic and much-studied data set from
Haxby et al. (2001), but clearly multiple diverse data sets
will need to be analyzed in order for its generalizability to
be determined. By presenting the source code for our
analyses (in Matlab and Python) in the Supplementary
Information, we hope to facilitate such tests.
Some preliminary evidence for generalizability comes

from two of our other studies: One, still in progress, and
the other, completed and under review. It is beyond the
scope of the present article to describe those studies in full,
but here, we provide a brief outline. The first, currently
under review, applies our similarity-based decoding ap-
proach to the problem of decoding the meanings of words
using the publicly available data set from the study by
Mitchell et al. (2008). Our decoding of that data is based
on the simple hypothesis that neural similarity matches
semantic similarity. It achieves more accurate decoding
of untrained word pairs than was obtained in the original
Mitchell et al. study or in any other published analysis of
their data. For more details, please see Raizada (under
review).
Probably, the most impressive demonstration to date of

the power of neural similarity is the across-species study
by Kriegeskorte, Kiani, and colleagues (Kriegeskorte et al.,
2008; Kiani, Esteky, Mirpour, & Tanaka, 2007), who dem-
onstrated a strikingly high degree of match between the
neural similarity structures of human and monkey infero-
temporal cortex. An interesting question is whether the
degree of match between those similarity structures is
sufficient to enable across-species decoding. Our new
similarity-based decoding allows that question to be di-
rectly addressed, and we are currently collaborating with
Kriegeskorte and Kiani to apply our method to their data.
Their data use 92 stimulus categories, as opposed to the
eight categories in the Haxby data. Whereas an exhaustive
search through 8! (8 factorial, i.e., 40,320) possible label-
ings takes only a few seconds on a standard desktop com-
puter, an exhaustive search through 92! labelings would
be computationally intractable. In collaboration with
Kriegeskorte and Kiani, we have developed a simple
heuristic for searching through labelings that is fast and
quite effective, and enables across-species decoding of
their data with accuracies much greater than chance. An
article describing this new work is currently in preparation
(Raizada, Kiani, & Kriegeskorte, in preparation).

Limitations of the New Approach

Although the new studies described above provide pre-
liminary evidence for the generality of our new decoding
approach, there are some types of decoding to which it
would not be applicable.
The simplest and probably the most common scenario

would be when there are only two categories to be de-
coded. To see why our decodingapproach would not handle
such decoding, let us call them Category 1 and Category 2,
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and let the task of the decoding be to assign the labels A
and B to those two categories. The matrix of neural sim-
ilarities between the two categories would therefore con-
sist of four elements. As is the case for all similarity
matrices, the diagonal elements would have the value of
one, with each diagonal element being the neural similarity
of a given category with itself. The more interesting ele-
ments are the off-diagonal entries: One is the similarity of
A with B, and the other is the similarity of B with A. For any
well-defined similarity metric, those two values will be
equal. Therefore, a candidate decoding that assigns the
label A to Category 1 and the label B to Category 2 will
produce the same similarity matrix as a decoding whose
labeling is the reverse. Our decoding approach works by
selecting the similarity matrix with the highest degree of
across-subject match, but in the two-category case, both
degrees of match will necessarily be equal.
It may be helpful, at this point, to distinguish between

two senses of symmetry in a similarity matrix. Because the
values of similarity(A,B) and similarity(B,A) are equal, all
similarity matrices are symmetric about the axis of their
leading diagonal, that is, they are equal to their own
matrix transpose. That standard type of symmetry is un-
problematic for our approach. However, the similarity
matrix produced by the two-category case described
above is symmetric in an additional sense: Different per-
mutations of labels end up producing the same similarity
matrix. We will refer to this as “permutation symmetry.”
The two labeling permutations (A = 1, B = 2) and (B = 1,
A = 2) are permutation-symmetric, and indeed, any two-
category similarity matrix will be permutation-symmetric.
It is also possible for permutation symmetry to arise

even when there are more than two categories. For exam-
ple, if there are three categories whose pairwise neural
similarities define an equilateral triangle or four catego-
ries whose similarities define an equilateral tetrahedron,
then the resulting similarity matrices would be entirely
permutation-symmetric, and our decoding approach would
be unable to deal with them.
In summary, our method is limited to sets of stimuli

that are not permutation-symmetric. Thus, it cannot be
applied to two-category sets. When there are more than
two categories, only specially constructed stimulus sets
such as those described above will have the property of
permutation symmetry. In most stimulus sets, such as
those of Kriegeskorte et al. (2008), Mitchell et al. (2008),
and Haxby et al. (2001), the stimuli were not constructed
to have identical similarity relations with each other. They
are, therefore, not permutation-symmetric, and our ap-
proach decodes those stimuli with success.
Two more minor limitations should also be borne in

mind. First, our approach is designed for across-subject
decoding, and indeed, it achieves that decoding by ab-
stracting away from individual subjectsʼ neural activation
patterns. It is therefore not applicable to single-subject
decoding. Second, like all existing work on across-subject
decoding, our approach requires that the same set of

stimulus categories must be used for all of the subjects.
This current limitation raises some interesting possibil-
ities: If different subjects are presented with partially
but incompletely overlapping sets of stimuli, then it might
be possible to use a model of the stimulus space (Kay,
Naselaris, Prenger, & Gallant, 2008; Mitchell et al., 2008)
to interpolate across those partially overlapping sets. That
possibility is outside the scope of the current article, but
we plan to explore it in future work.

Conclusion

It might seem obvious, at first sight, that neural decoding
should take neural activation patterns as its input. Indeed,
all previous neural decoding approaches have done
exactly that; this article is, as far as we are aware, the first
to perform neural decoding using not the neural patterns
themselves but, instead, the similarities between those
patterns. This, we wish to argue, is precisely why it is able
to achieve accurate across-subject decoding. To capture
the commonalities across subjects, it is beneficial to ab-
stract away from their idiosyncratic and subject-specific
“neural fingerprints.” Performing the decoding in sim-
ilarity space does exactly that.

The concept of similarity has been found to be a power-
ful tool in multiple domains of cognitive psychology
(Edelman, 1998; Medin et al., 1993; Tversky, 1977; Shepard,
1962) and in studies of language and conceptual structure
(Storms, Navarro, & Lee, 2010; Pedersen, Patwardhan, &
Michelizzi, 2004; Landauer & Dumais, 1997; Miller, 1995).
The idea of classifying stimuli based on their similarities,
rather than on the features of the stimuli themselves, has
also attracted considerable attention in the machine-
learning literature (Chen, Garcia, Gupta, Rahimi, &
Cazzanti, 2009; Pekalska & Duin, 2005). In fMRI research,
most investigations of neural similarity have been in the
domain of visual object recognition (Connolly et al.,
2012; Shinkareva et al., 2011; Kriegeskorte et al., 2008;
OʼToole et al., 2007; Hanson et al., 2004; Edelman et al.,
1998), but it has also been found to be important in
memory (Xue et al., 2010) and olfaction (Howard, Plailly,
Grueschow, Haynes, & Gottfried, 2009). Indeed, in animal
neurophysiology studies of olfaction, the concept of neural
similarity is central (Dupuy, Josens, Giurfa, & Sandoz, 2010;
Haddad et al., 2008; Guerrieri, Schubert, Sandoz, & Giurfa,
2005; Cleland, Morse, Yue, & Linster, 2002). These con-
siderations suggest that our new approach for decoding
in similarity space may have broad applicability, across
multiple neural and behavioral domains.

Our across-subject neural decoding demonstrates the
match between different peopleʼs representational schemes
by accurately bridging between them. It achieves this by
operating entirely within similarity space. Whether drawing
upon neural information from within a specific cortical area
or from disparate and diverse neural populations, this re-
veals a population-level regularity that makes different
people alike.
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