BCS 513: Introduction to fMRI: Imaging, computational analysis and neural representations

Very simplified MRI physics with no math

Feb 11, 2014

Outline of the lecture

Introduction of basic nuclear spin physics
Interaction of nuclei with magnetic field (static, RF, and gradient fields)
Nuts and bolts of MRI

Hardware
Pulse sequences
Image contrast

.

MRI in a nutshell

NMR = nuclear magnetic resonance nuclear: properties of nuclei in atoms magnetic: magnetic field required resonance: specific energy transition at radio frequency (RF)

NMR → MRI (1970's and 80's) field gradients: spatial encoding

Atoms that can be imaged with MRI

${}^{1}_{1}H {}^{13}_{6}C {}^{17}_{8}O {}^{19}_{9}F {}^{23}_{11}Na {}^{31}_{15}P$.

N is the abbreviation for the name of the atom A is the total number of protons+neutrons Z is the number of protons A-Z = the number of neutrons

Nuclear: Protons mostly

In order to be imaged, nuclei must:

- have an odd number of neutrons+protons
- be abundant in the body

IH (proton) is star of MRI!

- abundant: high concentration in human body
- high sensitivity, yields largest detectable signals
- 99% of human MRI and exclusive in this course
- Can image nuclei other than 1H, but extra hardware needed (different resonance frequency)

Spins, Angular Momentum, and Magnetic moment

- Spin is an intrinsic QM property of nuclei (and electrons)
- It acts as a current loop with internal angular momentum and magnetic moment: "spinning" and therefore the name spin

RF excites spins:

$$\Delta E = \frac{h}{2\pi} \cdot \gamma B_0 = \frac{h}{2\pi} \cdot \omega_0$$

Absorbed energy emitted, inducing voltage in detecting coil

Larmor Frequency

$$\omega_0 = \gamma B_0$$

J.Zhong, U R

When spins are put into magnetic field (QM view): High and low-energy states

Nuclear Moments from Entire Sample

No Magnetic Field

Random Orientation

No Net Magnetization

Nuclear Moments from Entire Sample

 B_0

Ζ

Resonance: Larmor Equation $\omega = \gamma B$

Precession Frequency

Magnetic Field Strength

Resonance: Larmor Equation

ω = γB, ν = ω/2πγ = 42.58 MHz/T (for 1H)

At 1.5T, *v* ~ 64 MHz At 3T, *v* ~ 128 MHz

Resonance Frequency for 1H 63.8 Signal ~ B_{θ} : High field advantage!

3.0

B Field Strength (Tesla)

1.5

Very brief history of MRI

- Pauli hypothesis (1924) and Stern/Gerlach expt: discovery of nuclear spins
- Rabbi determination (1938): Resonance
- Bloch and Purcell (1945): Basic components (static and RF magnetic field) of NMR
- Lauterbur and Mansfield (70-80s): field gradients for imaging and EPI (basis for fMRI techniques)
- Ogawa (1990): physiological basis (BOLD) of brain fMRI

From NMR to MRI

Paul C. Lauterbur Sir Peter Mansfield

photo PRB

-1973: Lauterbur suggests field gradients can be used to form images
-1977: Mansfield proposes echo-planar imaging (EPI) to acquire images faster

Nobel prize 2003 for physiology/medicine

The first MR image from Lauterbur

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 1.12 © 2004 Sinauer Associates, Inc.

functional MRI (fMRI)

- 1990: Ogawa observes BOLD effect with T2* in rats blood vessels became more visible as blood oxygen decreased
- Igentiation 1991: Belliveau observes first functional images using a contrast agent
- 1992: Ogawa & Kwong publish first human brain functional images using BOLD signal

Ogawa first BOLD expt

"...the contrast should have high sensitivity towards physiological changes which influence the level of blood oxygenation and could serve as a qualitative detection tool for mapping regional blood oxygennation levels in the brain..." Ogawa and Lee, MRM, 1990

fMRI BOLD: Rapid Overview

Basal state

Activated state

(from lower field gradients)

Magnetic field B: Uniform or linear, static or varying ■ B₀: Static, uniform: for spin polarization ■ B₁: RF-frequency, usually pulse (short time) burst): for signal excitation • $B_q = x.G(x) + y.G(y) + z.G(z)$ Short pulse, change linearly with spatial location: for relating the signal to spatial location $B=B_0+B_1+B_g$

Main hardware of MRI

Coils to generate three fields:

- B₀
- B₁
- B_g (field gradients)

Others are supportive

- shimming for better B₀ homogeneity,
- physiology monitoring
- data storage and processing
- Convenience and safety

•

Current moving in a loop induces a magnetic field (right-hand rule)

Generation of a static magnetic field

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 2.3 © 2004 Sinauer Associates, Inc.

The big magnet: magnetic field

Very strong (and costly)

1 Tesla (T) = 10,000 Gauss

Earth' s magnetic field = 0.5 Gauss 3 Tesla = 3 x 10,000 ÷ 0.5 = 60,000X Earth' s magnetic field Continuously on (can be a safety issue!)

Main field = B_0

\times 60,000 =

Source:

Digression: small portable MRI - Larry Wald et al, Harvard-MGH, 2013

To answer simple questions:

- acute stroke management: bleed or not, antithrombotic treatment or not
- traumatic brain injury: yes or no
- tumor follow-ups: grow or not
- Portable: magnet in one hand, electronics in the other (<45kg)
- Low field and low cost: <\$3000 for material</p>

MRI signal detection

Faraday's law of induction: Signal will be detected when the magnetization through the cross-section of the coil ("magnetic flux") changes with time

Since the coil is laying in the transverse plane, only M_{xy} can be detected.

Transverse Magnetization: source of MRI signal

After spins are put into magnetic field: RF pulse makes signal detectable

B_0 and B_1

Magnetization is tipped using an RF Pulse

Components of Tipped Magnetization

A component of the magnetization can be tipped into the transverse plane to give rise to a signal.

Resonance: RF freq. = Larmor freq. $\omega = \gamma B_0$

> Tip Angle $\theta = \omega \Delta t = \gamma B_1 \Delta t$

Tip AngleAmplitude of RF Time of ApplicationPulseof RF Pulse

a "90°" or π/2 pulse corresponding to flipping M from z to x-y plane for detection: excitation pulse

A "180°" or π pulse flips M to opposite side. Important for forming spin-echo (later): refocusing or inversion pulse

RF excitation and detection

RF coil: apply magnetic field along **B1** (\perp B₀)

- oscillating field at Larmor frequency, in range of radio transmissions
- same or different coils for receiving and transmission
- fit to the object size for best detection sensitivity (filling factor)

Magnetic Field Gradients for spatial encoding

x July z

Generation of x-, y-, and z-gradients and the static magnetic field (B₀)

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 2.7 (Part 2) © 2004 Sinauer Associates, Inc.

B0, Gradient, T/R, and Shim Coils

Bore (transmit/rece (55 – 60 cm) /

Magnetic field (B₀) Shim (B₀ uniformity)

From signal to image

- From imaging prospect, how to relate the signal to the spatial distribution of the spins, which is the source of the signal?
- Field gradients are the key for spatial encoding.

Resonance: RF freq. = Larmor freq. $\omega = \gamma B$

Gradient field: B = B(x,y,z) = xG(x)+yG(y)+zG(z)

Fast Fourier Transform (FFT) - the key step in image formation

Pulse sequences

- Well controlled events during signal excitation, evolution, and acquisition
 RF pulses, gradient pulses, signal detection (analog-to-digital, amplify)
 Time intervals and time delays (TE T
- Time intervals and time delays (TE, TR, TI,...)
- Repeated applications for completion of image or signal averaging

Recipe for MRI

1) Put subject in big magnetic field (leave him there)

- 2) Transmit radio waves into subject [about 3 ms]
- 3) Turn off radio wave transmitter and turn on gradients
- 4) Receive radio waves re-transmitted by subject

 Manipulate re-transmission with magnetic fields during this *readout* interval [10-100 ms: MRI is not a snapshot]

5) Store measured radio wave data vs. time

Now go back to 2) to get some more data

6) Process raw data to reconstruct images

SignalSpatialSignaltimeSignalspatialsignalexcitationencodedetection

J.Zhong, U Rochester

Source:

Fourier Transform

Key concepts in MRI physics?

- Image formation: Larmor Equation and FFT
- Image contrast and contrast mechanisms
 - T1, T2 and proton density imaging
 - T2* and BOLD
 - Dynamics: static and moving spins
 - Microscopic motion: diffusion

Books and previous BCS513 lecture pp

Advantages of MR

- 3D and arbitrary imaging orientations
- Rich and good soft tissue contrast
- Functional and physiological information
- No radiation
- Very safe

And many brain functional applications!

BOLD
Diffusion (DTI, DSI, DKI, HARDI, ...)
ASL
MRS

Thanks

