Math 164: Introduction to Optimization

Instructor: Wotao Yin Department of Mathematics, UCLA Winter 2014

online discussions on piazza.com

Cabinet manufacture

Table 1.1. Cabinet data.

Cabinet	Wood	Labor	Revenue
Bookshelf	10	2	100
With Doors	12	4	150
With Drawers	25	8	200
Custom	20	12	400

Available resources:

- Wood 5000
- Label 1500

Objective: to maximize the total revenue

maximize $z = 100x_1 + 150x_2 + 200x_3 + 400x_4$ subject to $10x_1 + 12x_2 + 25x_3 + 20x_4 \le 5000$ $2x_1 + 4x_2 + 8x_3 + 12x_4 \le 1500$ $x_1, x_2, x_3, x_4 \ge 0.$

Resource-constrained revenue optimization

- m resources; resource i has b_i units available
- *n* products; product *j* uses a_{ij} units of resource *i*, generates revenue c_j
- find the maximal revenue subject to available resources

maximize
$$z = \sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} \le b_i, \quad i = 1, \dots, m$
 $x_j \ge 0, \qquad j = 1, \dots, n$

Compact form

maximize
$$z = c^T x$$

subject to $Ax \le b$
 $x \ge 0$.

Job assignment

- An insurance office handles three types of work: Information, Policy, Claims.
- There are five workers, and each of them can handle all three types of work
- The office wants to minimize the process time by designing an call assignment strategy.

Worker	Information	Policy	Claim
1	10	28	31
2	15	22	42
3	13	18	35
4	19	25	29
5	17	23	33

 Table 1.2. Work times (in minutes).

Variables:

- Information calls: fraction p_i assigned to worker i, $\sum_i p_i = 1$
- Policy calls: fraction q_i assigned to worker i, $\sum_i q_i = 1$
- Claim calls: fraction r_i assigned to worker i, $\sum_i r_i = 1$
- Process time t

Objective: to minimize t

Optimization model:

 $\begin{array}{ll} \text{minimize} & z=t \\ \text{subject to} & p_1+p_2+p_3+p_4+p_5=1 \\ & q_1+q_2+q_3+q_4+q_5=1 \\ & r_1+r_2+r_3+r_4+r_5=1 \\ & 10p_1+28q_1+31r_1 \leq t \\ & 15p_2+22q_2+42r_2 \leq t \\ & 13p_3+18q_3+35r_3 \leq t \\ & 19p_4+25q_4+29r_4 \leq t \\ & 17p_5+23q_5+33r_5 \leq t \\ & p_i,q_i,r_i>0, \ i=1,\ldots,5. \end{array}$

Electrical wire design

- Four building to be connected by electrical wires at one point
- Two circle buildings and two square buildings

Figure 1.6. Electrical connections.

Variables:

- (x₀, y₀): central point
- (x_i, y_i) : connection point on building i, i = 1, 2, 3, 4

Objective: to minimize the total wire length

Wire lengthen between the central point and building i is

$$w_i = \sqrt{(x_i - x_0)^2 + (y_i - y_0)^2}$$

Constraints on (x_i, y_i) :

- circle building: $(x_i x_{center})^2 + (y_i y_{center})^2 \le radius^2$
- square building: $x_{left} \le x_i \le x_{right}$ and $y_{bottom} \le y_i \le y_{top}$

Model:

minimize
$$z = w_1 + w_2 + w_3 + w_4$$

subject to $w_i = \sqrt{(x_i - x_0)^2 + (y_i - y_0)^2}, i = 1, 2, 3, 4,$
 $(x_1 - 1)^2 + (y_1 - 4)^2 \le 4$
 $(x_2 - 9)^2 + (y_2 - 5)^2 \le 1$
 $2 \le x_3 \le -1$
 $6 \le x_4 \le -3$
 $-2 \le y_4 \le -2$.

Traffic optimization

Figure 1.8. Traffic network.

Travel time model: between nodes i and j

- if traffic is light, travel time is $t_{i,j}$
- otherwise, define x_{i,j} #.cars entering per hour, c_{i,j} maximal #.cars entering per hour, α_{i,j} a slow-down factor

$$T_{i,j}(x_{i,j}) = t_{i,j} + \alpha_{i,j} \frac{x_{i,j}}{1 - x_{i,j}/c_{i,j}}.$$

If there is no traffic, the travel time is $t_{i,j}$. If $x_{i,j} \to c_{i,j}$, then $T_{i,j} \to \infty$.

Objective: to minimize the total travel time through the network from node 1 to node 4 for a volume of X cars per hour.

Optimization model:

minimize
$$f(x) = \sum x_{i,j} T_{i,j}(x_{i,j})$$

subject to the constraints

$$x_{1,2} + x_{1,3} = X$$

$$x_{2,3} + x_{2,4} - x_{1,2} = 0$$

$$x_{3,4} - x_{1,3} - x_{2,3} = 0$$

$$x_{2,4} + x_{3,4} = X$$

$$0 \le x_{i,j} \le c_{ij}.$$

Potential snag: any $x_{i,j} = c_{i,j}$ causing undefined objective $(+\infty)$. Fix: use $0 \le x_{i,j} \le c_{i,j} - \epsilon$ instead.

Projection to hyperplane

Find a minimum distance from a point r to the set $S = \{x : a^T x = b\}$.

- In 2D, \boldsymbol{S} is a line
- In 3D, S is a plane
- in 4 or high dimensions, S is called a hyperplane.

The least distance problem can be formulated as

minimize
$$f(x) = \frac{1}{2}(x-r)^T(x-r)$$

subject to $a^Tx = b$.

Unlike most NLP, this problem has a closed-form solution, which is unique,

$$x^* = r + \frac{b - a^T r}{a^T a}a.$$

Quadratic programming (QP)

General QP:

minimize
$$f(x) = \frac{1}{2}x^TQx$$

subject to $Ax \ge b$.

- Easy if Q is positive semi-definite (PSD or $Q \succeq 0$)
- Can be difficult otherwise.

Support vector machine (SVM)

Task: to classify a set of data points into two sets.

Examples:

- emails: legitimate or spam
- medical data (age, sex, weight, blood pressure, cholesteral levels, etc.) of a person: high risk or low risk for a heart attack
- handwritten digits: digit 0 or not.

Refined statement: to determine a rule based on the existing data (*training data*) that characterizes the set of points that have the property, distinguishing them from those not having the property.

Training data are *labeled*.

The rule, once determined, can be used to tell whether a new point (*test data*) has the property or not. The rule is called *classifier*.

Simplest form: a set of *m* training data $x_i \in \mathbb{R}^n$ and labels $y_i = \pm 1$.

Assume it is possible to find a hyperplane $\{x : w^T x + b = 0\}$ that separates the two sets of data points. We would like to find the one with margins. Thus we require (two hyperplanes)

$$w^T x_i + b \ge +1$$
 for $y_i = +1$,
 $w^T x_i + b \le -1$ for $y_i = -1$.

w and b can be scaled so that the separation will be ± 1 . Signs can be flipped.

There are **infinite many hyperplanes** that separate the two sets of points. We would like to have the one separate the positive from the negative *as far apart as possible*.

The separation margin is given by 2/||w||. To find w and b with maximal margin, it is equivalent to minimize $w^T w$.

minimize
$$f(w, b) = \frac{1}{2}w^T w$$

subject to $y_i(w^T x_i + b) \ge 1$, $i = 1, ..., m$.

Coefficient 1/2 is included for convenience of analysis and computation. Among the training points, the few that lie on the boundary of either hyperplane are called *support vectors*. They determine w^* and b^* . Removing the remaining training points does not change the solution. Finally, given a new point x, we can use $f(x) = w^T x + b$ (*learning machine*) to tell the label of x, which is the sign of f(x). So far we have assumed that the training set is perfectly separable. For the non-separable case, we must allow some points to violate the separating hyperplane. But, we impose a penalty ξ_i for the violation.

$$w^T x_i + b \ge +1 - \xi_i$$
 for $y_i = +1$
 $w^T x_i + b \le -1 + \xi_i$ for $y_i = -1$.

We only allow $\xi_i \ge 0$; otherwise, reward will be given to non-violating points. Our new model is

minimize
$$f(w, b, \xi) = \frac{1}{2}w^T w + C \sum_{i=1}^m \xi_i$$

subject to
$$y_i(w^T x_i + b) \ge 1 - \xi_i, \quad i = 1, \dots, m,$$

$$\xi_i \ge 0.$$

where C is a penalty parameter balancing between the margin maximization and violation penalty.

Points inside squares are *misclassified points*. They lie on the incorrect side of the hyperplane $w^T x + b = 0$. But there are only two of them.

Portfolio optimization

Goal: selects a set of assets to achieve a good return with a controlled amount of risk.

The work was pioneered by Nobel Prize laureate Harry Markowitz. He demonstrated how to reduce the risk of investment by selecting <u>a portfolio of stocks</u> rather than picking individual attractive stocks.

Definitions:

- Investment proportion: $x = [x_1, \ldots, x_n]^T$, x_j is the proportion invested in asset j.
- Expected return: $\mu = [\mu_1, \dots, \mu_n]^T$, μ_j for asset j. Portfolio expected rate of return $= \mu^T x$.
- Risk: $\boldsymbol{\Sigma}$ is the matrix of variances and covariances of the assets' returns.

Understanding risks:

- A high variance Σ_{jj} indicates high volatility or risk of asset j alone.
- A <u>positive covariance</u> Σ_{ij} indicates that the values of assets *i* and *j* tend to move in the same direction. For example, stocks in the same industry.
- A <u>negative covariance</u> Σ_{ij} indicates that the values of assets i and j tend to move in the opposite direction, a desirable feature in a diversified portfolio.
- The portfolio risk is defined as the expected variance $x^T \Sigma x$.

 μ and Σ can be computed from the assets' history.

We have two conflicting objectives:

- to maximize the expected return $\mu^T x$
- to minimize the risk $x^T \Sigma x$.

Therefore, we introduce a parameter $\alpha>0$ to reflect the trade-off between them.

maximize
$$\mu^T x - \alpha x^T \Sigma x$$
 subject to $\sum_i x_i = 1, x \ge 0.$

Parameter α :

- larger \Rightarrow more risk aversion
- smaller \Rightarrow higher tolerance for risk, more emphasis on the expected return
- it can be difficult to choose a sensible value, so we commonly solve this model for a range of α and obtain a solution path.

Example

Period	Stock 1	Stock 2	Stock 3	Stock 4
1	0.08	0.05	0.01	0.08
2	0.06	0.17	0.09	0.12
3	0.07	0.05	0.10	0.07
4	0.04	-0.07	0.04	-0.01
5	0.08	0.12	0.08	0.09
6	0.07	0.22	0.11	0.09

Table 1.3. Past rates of return of stocks.

Sample mean and variance:

$$r = (0.0667 \quad 0.0900 \quad 0.0717 \quad 0.0733),$$

$$V = \begin{pmatrix} 0.00019 & 0.00065 & 0.00004 & 0.00038 \\ 0.00065 & 0.00883 & 0.00218 & 0.00327 \\ 0.00004 & 0.00218 & 0.00125 & 0.00063 \\ 0.00308 & 0.00327 & 0.00063 & 0.00162 \end{pmatrix}.$$

α	Stock 1	Stock 2	Stock 3	Stock 4	Mean	Variance
1	0	1	0	0	0.090	8.8×10^{-3}
2	0.12	0.65	0.23	0	0.083	4.5×10^{-3}
5	0.57	0.19	0.24	0	0.072	8.0×10^{-4}
10	0.71	0.04	0.25	0	0.069	2.6×10^{-4}
100	0.87	0	0.13	0	0.067	1.7×10^{-4}

Table 1.4. *Optimal portfolio for selected values of* α *.*

Figure 1.12. Efficient frontier.