
Lecture 3                                     Jan 22, 2014 

Topics covered: (Sec 1.2) 

• Applications of propositional logic 

• Combinational logic circuits 

• Logic puzzles  

• Specifications using propositional logic 

• Propositional logic in web search 

 

• Propositional equivalence (Sec 1.3) 

• Proof of equivalence 

• Satisfiability testing 

 

• Predicate logic (basic definitions) Sec 1.4  
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Propositional Logic for expressing 

requirements or conditions  

  



Propositional logic for specification 

Exercise 



Propositional logic for specification 

Exercise 

Solution:   e  a ^ (b V (p ^ r)) 



Logic puzzles 

• Puzzles that can be solved using logical reasoning are 

known as logic puzzles. Last class, we saw some 

examples. (Recall: Exactly j statements are false, j= 1, 

2, …) 

 

• Solving logic puzzles is an excellent way to practice 

working with the rules of logic.  

 

• Computer programs designed to carry out logical 

reasoning often use well-known logic puzzles to 

illustrate their capabilities.  

 

• We begin with a puzzle originally posed by Raymond 

Smullyan, a master of logic puzzles. 



Logic puzzles 



Logic puzzles 



Logic puzzles 

Solution: (19) Suppose A is a knight. Then, A is telling the truth 

and hence one of them is a knave. Since A is a knight, B has to 
be a knave. The other alternative is not possible since a knave 

can’t truthfully state that A or B is a knave.  
 

Conclusion: A is a knight, B is a knave.  



Logic puzzles 

Solution: (21) Suppose A is a knave. Then what A says is false. 

Thus, A is a knight and B is a knave. But this is not possible, so A is 

a knight and hence the statement made by A is true. This 
means B is a knight. 

 
Conclusion: Both are knights.  

 
PROBLEMS 20 and 23 are assigned class work problems. 



Logic puzzles 

Exercise 35, page 24 

 

A detective has interviewed four witnesses to a crime. 

From the stories of the witnesses the detective has concluded 

that if the butler is telling the truth then so is the cook; the cook 

and the gardener cannot both be telling the truth; the 

gardener and the handyman are not both lying; and if the 

handyman is telling the truth then the cook is lying. For each of 

the four witnesses, can the detective determine 

whether that person is telling the truth or lying? 

Explain your reasoning. 

 
 

We will solve this problem in class. 



Logic puzzles 

Exercise 35, page 24 

 
A detective has interviewed four witnesses to a crime. 

From the stories of the witnesses the detective has concluded 

that if the butler is telling the truth then so is the cook; the cook 

and the gardener cannot both be telling the truth; the gardener 

and the handyman are not both lying; and if the handyman is 

telling the truth then the cook is lying. For each of the four 

witnesses, can the detective determine whether that person is 

telling the truth or lying? Explain your reasoning. 

 
Answer: B and C are lying. Can’t determine the other two. 



Logic circuits 

• In last lecture, we discussed how to create compound 

statements that combine propositions using operations: 
~, V, ^,  etc. 

 

• Computer hardware is based on the same framework. 

Inputs and outputs use binary signals 0, and 1.  

 

• Circuits can be built to evaluate whether a compound 

expression (propositional formula) is true. 

 

• The idea of building circuits using Boolean algebra as 

the basis was developed by Claude Shannon, who is 

also famous for his work on information theory which 

plays a central role in electronic communication.  



Logic circuits 

• Initially these building blocks were built using vacuum 

tubes, but since 50’s, they are built using silicon.  

 

• Computers are built using combinational logic 

together with memory to hold intermediate results of 

computation. (Such memory units are called volatile 

memory or RAM.) 

  



A combinational circuit 

Function computed by the circuit: 

p q r (p  q) (p  q)V r 

true true true false false 

true false true true true 

false true true false false 

false false true false false 

true true false false true 

true false false true true 

false true false false true 

false false false false true 



Combinational Circuits 

Design a circuit (using ~, ^ and V gates) that implements 

the following Boolean function F of three variables p, q 

and r. 

p q r F(p, q, r) 

true true true true 

true false true true 

false true true true 

false false true false 

true true false true 

true false false false 

false true false false 

false false false false 

This Boolean function is 
called the majority 

function that takes value 

true if and only if at least 

two of its three inputs are 

true. 
 

SOLUTION WILL BE 
PRESENTED IN CLASS. 
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Two important definitions 

• A tautology is a proposition that’s always TRUE. 

• A contradiction is a proposition that’s always 

FALSE. 

 

Examples: 

 p ^ ~p                            (contradiction) 

 (p  q) V (~q)                 (tautology) 
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Propositional Logic – a proof 

 Show that  [p  (p  q)]  q  is a tautology.  
 

Proof: We can use truth-table approach as we 
have done in previous examples. 

 

• Another approach (often more efficient) 

– Deduction system: use rules to replace one 
propositional expression by an equivalent 
one, and repeat the process until the 
expression simplifies to T (which means the 
given expression is always True, i.e., it is a 
tautology.) 

 

           

           

           

           

            



Propositional logic - Rules of equivalence 

• There are many rules of equivalence that we can use. 
• An important equivalence is   

 p → q ≡ (~𝑝 𝑉 𝑞) 

 
• Each of these can 

be proved to be a 

tautology and 

hence we can 

replace the left-

side of any of these 

by the 

corresponding 

right-side.  
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Propositional Logic – a proof 

 Show that  [p  (p  q)]  q  is a tautology.  

Proof:  We use  to show that [p  (p  q)]  q  T.  

 

 

 
 

 

 

substitution for   

[p  (p  q)]  q 

 [(p  p)  (p  q)]  q  

   [p  (p  q)]  q                            

 [ F  (p  q)]  q  

 (p  q)  q  

 (p  q)  q  

 (p  q)  q  

 p  (q  q ) 

 p  T 

 T 

          distributive law 

          replacement 

          identity 

          substitution for  

          DeMorgan’s law 

          associative 

           excluded middle 

           domination 



Propositional logic proof 

    



Exercise, Section 1.3 

The following exercise involves the logical operators 

NAND and NOR. The proposition p NAND q is true when 

either p or q, or both, are false; and it is false when both 

p and q are true. The proposition p NOR q is true when 

both p and q are false, and it is false otherwise. The 

proposition p NOR q are denoted by p | q and p ↓ q, 

respectively. (The operators | and ↓ are called the 

Sheffer stroke and the Peirce arrow after H. M. Sheffer 

and C. S. Peirce, respectively. 

 

Exercise 51: Find a compound proposition logically 

equivalent to p → q using only the logical operator ↓. 



Exercise, Section 1.3 

Exercise 55: How many different truth tables of 

compound propositions are there that involve the 

propositional variables p and q? 
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Predicate Logic  

Alicia eats pizza at least once a week. 

Garrett eats pizza at least once a week. 

Allison eats pizza at least once a week. 

Gregg eats pizza at least once a week. 

Ryan eats pizza at least once a week. 

Meera eats pizza at least once a week. 

Ariel eats pizza at least once a week. 
 

…
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Predicates 

Alicia eats pizza at least once a week. 

 

 

Define: 

 EP(x) = “x eats pizza at least once a week.” 

  

A predicate, or propositional function, is a function 
that takes some variable(s) as arguments and 
returns True or False. 

 

Note that EP(x) is not a proposition, EP(Ariel) is. 

 

 
 

…
 



Predicates 

A predicate is a function of some variables (for 

example x, y, …).  

 

The value taken by variable belongs to some set called 

its domain, 

 

and the value taken by the function will always be true 

or false.  

 

Example: taking242 is a predicate with domain D = set 

of all CS majors. For a specific student, e.g., Tom, 

taking242(Tom) will be true if and only if Tom is currently 

taking242. 
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Predicates 

Suppose Q(x,y) denotes the predicate “x > y” 

 

True or False ? 

 Q(4, 3) 

 Q(3, 4) 

 Q(3, 9) V Q(9, 3) 
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Predicates - the universal quantifier 

Another way of changing a predicate into a 
proposition. 

 

Suppose P(x) is a predicate on some universe of 
discourse. 

Ex. B(x) = “x is carrying a backpack,” x is set of cs242 
students. 

 

The universal quantifier of P(x) is the statement: 

 “P(x) is true for all x in the universe of discourse.” 
 

We write it x P(x), and say “for all x, P(x)” 
 

x P(x) is TRUE if P(x) is true for every single x. 

x P(x) is FALSE if there is an x for which P(x) is false. 
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Predicates - the universal quantifier 

B(x) = “x is wearing sneakers.” 

L(x) = “x is at least 21 years old.” 

Y(x)= “x is less than 24 years old.” 
 

Are either of these propositions true? 
 

a) x (Y(x)  B(x)) 

b) x (Y(x)  L(x)) 
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Predicates - the existential quantifier 

Another way of changing a predicate into a proposition. 
 

Suppose P(x) is a predicate on some universe of 
discourse. 

Ex. C(x) = “x has a candy bar,” x is set of cs242 
students. 

 

The existential quantifier of P(x) is the proposition: 

 “P(x) is true for some x in the universe of discourse.” 
 

We write it x P(x), and say “for some x, P(x)” 
 

x P(x) is TRUE if there is an x for which P(x) is true.  

x P(x) is FALSE if P(x) is false for every single x. 
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Predicates - the existential quantifier 

B(x) = “x is majoring in computer science.” 

L(x) = “x is at least 21 years old.” 

Y(x)= “x is less than 24 years old.” 
 

 

 

 

Which of these propositions true? 
 

a) x B(x) 

b) x (Y(x)  L(x)) 

c) x (Y(x))  x (L(x)) 

 

 

Universe of discourse 
is people in this room. 
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Predicates - more examples 

Universe of discourse 
is all creatures. 

L(x) = “x is a lion.” 

F(x) = “x is fierce.” 

C(x) = “x drinks coffee.” 

 

All lions are fierce. 

Some lions don’t drink coffee. 

Some fierce creatures don’t drink coffee. 

x (L(x)  F(x)) 

x (L(x)  C(x))   

x (F(x)  C(x))   
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Predicates - more examples 

Universe of discourse 
is all creatures. 

L(x) = “x is a lion.” 

F(x) = “x is fierce.” 

C(x) = “x drinks coffee.” 

 

All lions are fierce. 

Some lions don’t drink coffee. 

Some fierce creatures don’t drink coffee. 

x (L(x)  F(x)) 
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Predicates - more examples 

Universe of discourse 
is all creatures. 

L(x) = “x is a lion.” 

F(x) = “x is fierce.” 

C(x) = “x drinks coffee.” 

 

All lions are fierce. 

Some lions don’t drink coffee. 

Some fierce creatures don’t drink coffee. 

x (L(x)  C(x))   
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Predicates - more examples 

Universe of discourse 
is all creatures. 

L(x) = “x is a lion.” 

F(x) = “x is fierce.” 

C(x) = “x drinks coffee.” 

 

All lions are fierce. 

Some lions don’t drink coffee. 

Some fierce creatures don’t drink coffee. 

x (F(x)  C(x))   
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Predicates - more examples 

Universe of discourse 
is all creatures. 

B(x) = “x is a hummingbird.” 

L(x) = “x is a large bird.” 

H(x) = “x lives on honey.” 

R(x) = “x is richly colored.” 

 

All hummingbirds are richly colored. 

No large birds live on honey. 

Birds that do not live on honey are dully colored. 
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Predicates - more examples 

Universe of discourse 
is all creatures. 

B(x) = “x is a hummingbird.” 

L(x) = “x is a large bird.” 

H(x) = “x lives on honey.” 

R(x) = “x is richly colored.” 

 

All hummingbirds are richly colored. 

No large birds live on honey. 

Birds that do not live on honey are dully colored. 
 

x (B(x)  R(x)) 
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Predicates - quantifier negation 

No large birds live on honey. 

 

x P(x) means “P(x) is true for some x.” 

What about x P(x) ? 
Not [“P(x) is true for some x.”] 

“P(x) is not true for all x.” 

x P(x) 

 

So, x P(x) is the same as x P(x). 

x (L(x)  H(x))   

x (L(x)  H(x))   
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Predicates - more examples 

Universe of discourse 
is all creatures. 

B(x) = “x is a hummingbird.” 

L(x) = “x is a large bird.” 

H(x) = “x lives on honey.” 

R(x) = “x is richly colored.” 

 

All hummingbirds are richly colored. 

No large birds live on honey. 

Birds that do not live on honey are dully colored. 
 

x (L(x)  H(x))   
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Predicates - more examples 

Universe of discourse 
is all creatures. 

B(x) = “x is a hummingbird.” 

L(x) = “x is a large bird.” 

H(x) = “x lives on honey.” 

R(x) = “x is richly colored.” 

 

All hummingbirds are richly colored. 

No large birds live on honey. 

Birds that do not live on honey are dully colored. 
 x (H(x)  R(x))   
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Predicates - quantifier negation 

Not all large birds live on honey. 

 

x P(x) means “P(x) is true for every x.” 

What about x P(x) ? 
Not [“P(x) is true for every x.”] 

“There is an x for which P(x) is not true.” 

x P(x) 

 

So, x P(x) is the same as x P(x). 

x (L(x)  H(x))   

x (L(x)  H(x))   
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Predicates - quantifier negation 

 
So, x P(x) is the same as  x P(x). 

So, x P(x) is the same as  x P(x). 

 

General rule: to negate a quantifier, move negation to 

the right, changing quantifiers as you go.   


