
Lecture 3 Jan 22, 2014

Topics covered: (Sec 1.2)

• Applications of propositional logic

• Combinational logic circuits

• Logic puzzles

• Specifications using propositional logic

• Propositional logic in web search

• Propositional equivalence (Sec 1.3)

• Proof of equivalence

• Satisfiability testing

• Predicate logic (basic definitions) Sec 1.4

1/22/2014

Propositional Logic for expressing

requirements or conditions

Propositional logic for specification

Exercise

Propositional logic for specification

Exercise

Solution: e  a ^ (b V (p ^ r))

Logic puzzles

• Puzzles that can be solved using logical reasoning are

known as logic puzzles. Last class, we saw some

examples. (Recall: Exactly j statements are false, j= 1,

2, …)

• Solving logic puzzles is an excellent way to practice

working with the rules of logic.

• Computer programs designed to carry out logical

reasoning often use well-known logic puzzles to

illustrate their capabilities.

• We begin with a puzzle originally posed by Raymond

Smullyan, a master of logic puzzles.

Logic puzzles

Logic puzzles

Logic puzzles

Solution: (19) Suppose A is a knight. Then, A is telling the truth

and hence one of them is a knave. Since A is a knight, B has to
be a knave. The other alternative is not possible since a knave

can’t truthfully state that A or B is a knave.

Conclusion: A is a knight, B is a knave.

Logic puzzles

Solution: (21) Suppose A is a knave. Then what A says is false.

Thus, A is a knight and B is a knave. But this is not possible, so A is

a knight and hence the statement made by A is true. This
means B is a knight.

Conclusion: Both are knights.

PROBLEMS 20 and 23 are assigned class work problems.

Logic puzzles

Exercise 35, page 24

A detective has interviewed four witnesses to a crime.

From the stories of the witnesses the detective has concluded

that if the butler is telling the truth then so is the cook; the cook

and the gardener cannot both be telling the truth; the

gardener and the handyman are not both lying; and if the

handyman is telling the truth then the cook is lying. For each of

the four witnesses, can the detective determine

whether that person is telling the truth or lying?

Explain your reasoning.

We will solve this problem in class.

Logic puzzles

Exercise 35, page 24

A detective has interviewed four witnesses to a crime.

From the stories of the witnesses the detective has concluded

that if the butler is telling the truth then so is the cook; the cook

and the gardener cannot both be telling the truth; the gardener

and the handyman are not both lying; and if the handyman is

telling the truth then the cook is lying. For each of the four

witnesses, can the detective determine whether that person is

telling the truth or lying? Explain your reasoning.

Answer: B and C are lying. Can’t determine the other two.

Logic circuits

• In last lecture, we discussed how to create compound

statements that combine propositions using operations:
~, V, ^,  etc.

• Computer hardware is based on the same framework.

Inputs and outputs use binary signals 0, and 1.

• Circuits can be built to evaluate whether a compound

expression (propositional formula) is true.

• The idea of building circuits using Boolean algebra as

the basis was developed by Claude Shannon, who is

also famous for his work on information theory which

plays a central role in electronic communication.

Logic circuits

• Initially these building blocks were built using vacuum

tubes, but since 50’s, they are built using silicon.

• Computers are built using combinational logic

together with memory to hold intermediate results of

computation. (Such memory units are called volatile

memory or RAM.)

A combinational circuit

Function computed by the circuit:

p q r (p  q) (p  q)V r

true true true false false

true false true true true

false true true false false

false false true false false

true true false false true

true false false true true

false true false false true

false false false false true

Combinational Circuits

Design a circuit (using ~, ^ and V gates) that implements

the following Boolean function F of three variables p, q

and r.

p q r F(p, q, r)

true true true true

true false true true

false true true true

false false true false

true true false true

true false false false

false true false false

false false false false

This Boolean function is
called the majority

function that takes value

true if and only if at least

two of its three inputs are

true.

SOLUTION WILL BE
PRESENTED IN CLASS.

1/22/2014

Two important definitions

• A tautology is a proposition that’s always TRUE.

• A contradiction is a proposition that’s always

FALSE.

Examples:

 p ^ ~p (contradiction)

 (p  q) V (~q) (tautology)

1/22/2014

Propositional Logic – a proof

 Show that [p  (p  q)]  q is a tautology.

Proof: We can use truth-table approach as we
have done in previous examples.

• Another approach (often more efficient)

– Deduction system: use rules to replace one
propositional expression by an equivalent
one, and repeat the process until the
expression simplifies to T (which means the
given expression is always True, i.e., it is a
tautology.)

Propositional logic - Rules of equivalence

• There are many rules of equivalence that we can use.
• An important equivalence is

 p → q ≡ (~𝑝 𝑉 𝑞)

• Each of these can

be proved to be a

tautology and

hence we can

replace the left-

side of any of these

by the

corresponding

right-side.

1/22/2014

Propositional Logic – a proof

 Show that [p  (p  q)]  q is a tautology.

Proof: We use  to show that [p  (p  q)]  q  T.

substitution for 

[p  (p  q)]  q

 [(p  p)  (p  q)]  q

 [p  (p  q)]  q

 [F  (p  q)]  q

 (p  q)  q

 (p  q)  q

 (p  q)  q

 p  (q  q)

 p  T

 T

 distributive law

 replacement

 identity

 substitution for 

 DeMorgan’s law

 associative

 excluded middle

 domination

Propositional logic proof

Exercise, Section 1.3

The following exercise involves the logical operators

NAND and NOR. The proposition p NAND q is true when

either p or q, or both, are false; and it is false when both

p and q are true. The proposition p NOR q is true when

both p and q are false, and it is false otherwise. The

proposition p NOR q are denoted by p | q and p ↓ q,

respectively. (The operators | and ↓ are called the

Sheffer stroke and the Peirce arrow after H. M. Sheffer

and C. S. Peirce, respectively.

Exercise 51: Find a compound proposition logically

equivalent to p → q using only the logical operator ↓.

Exercise, Section 1.3

Exercise 55: How many different truth tables of

compound propositions are there that involve the

propositional variables p and q?

1/22/2014

Predicate Logic

Alicia eats pizza at least once a week.

Garrett eats pizza at least once a week.

Allison eats pizza at least once a week.

Gregg eats pizza at least once a week.

Ryan eats pizza at least once a week.

Meera eats pizza at least once a week.

Ariel eats pizza at least once a week.

…

1/22/2014

Predicates

Alicia eats pizza at least once a week.

Define:

 EP(x) = “x eats pizza at least once a week.”

A predicate, or propositional function, is a function
that takes some variable(s) as arguments and
returns True or False.

Note that EP(x) is not a proposition, EP(Ariel) is.

…

Predicates

A predicate is a function of some variables (for

example x, y, …).

The value taken by variable belongs to some set called

its domain,

and the value taken by the function will always be true

or false.

Example: taking242 is a predicate with domain D = set

of all CS majors. For a specific student, e.g., Tom,

taking242(Tom) will be true if and only if Tom is currently

taking242.

1/22/2014

Predicates

Suppose Q(x,y) denotes the predicate “x > y”

True or False ?

 Q(4, 3)

 Q(3, 4)

 Q(3, 9) V Q(9, 3)

1/22/2014

Predicates - the universal quantifier

Another way of changing a predicate into a
proposition.

Suppose P(x) is a predicate on some universe of
discourse.

Ex. B(x) = “x is carrying a backpack,” x is set of cs242
students.

The universal quantifier of P(x) is the statement:

 “P(x) is true for all x in the universe of discourse.”

We write it x P(x), and say “for all x, P(x)”

x P(x) is TRUE if P(x) is true for every single x.

x P(x) is FALSE if there is an x for which P(x) is false.

1/22/2014

Predicates - the universal quantifier

B(x) = “x is wearing sneakers.”

L(x) = “x is at least 21 years old.”

Y(x)= “x is less than 24 years old.”

Are either of these propositions true?

a) x (Y(x)  B(x))

b) x (Y(x)  L(x))

1/22/2014

Predicates - the existential quantifier

Another way of changing a predicate into a proposition.

Suppose P(x) is a predicate on some universe of
discourse.

Ex. C(x) = “x has a candy bar,” x is set of cs242
students.

The existential quantifier of P(x) is the proposition:

 “P(x) is true for some x in the universe of discourse.”

We write it x P(x), and say “for some x, P(x)”

x P(x) is TRUE if there is an x for which P(x) is true.

x P(x) is FALSE if P(x) is false for every single x.

1/22/2014

Predicates - the existential quantifier

B(x) = “x is majoring in computer science.”

L(x) = “x is at least 21 years old.”

Y(x)= “x is less than 24 years old.”

Which of these propositions true?

a) x B(x)

b) x (Y(x)  L(x))

c) x (Y(x))  x (L(x))

Universe of discourse
is people in this room.

1/22/2014

Predicates - more examples

Universe of discourse
is all creatures.

L(x) = “x is a lion.”

F(x) = “x is fierce.”

C(x) = “x drinks coffee.”

All lions are fierce.

Some lions don’t drink coffee.

Some fierce creatures don’t drink coffee.

x (L(x)  F(x))

x (L(x)  C(x))

x (F(x)  C(x))

1/22/2014

Predicates - more examples

Universe of discourse
is all creatures.

L(x) = “x is a lion.”

F(x) = “x is fierce.”

C(x) = “x drinks coffee.”

All lions are fierce.

Some lions don’t drink coffee.

Some fierce creatures don’t drink coffee.

x (L(x)  F(x))

1/22/2014

Predicates - more examples

Universe of discourse
is all creatures.

L(x) = “x is a lion.”

F(x) = “x is fierce.”

C(x) = “x drinks coffee.”

All lions are fierce.

Some lions don’t drink coffee.

Some fierce creatures don’t drink coffee.

x (L(x)  C(x))

1/22/2014

Predicates - more examples

Universe of discourse
is all creatures.

L(x) = “x is a lion.”

F(x) = “x is fierce.”

C(x) = “x drinks coffee.”

All lions are fierce.

Some lions don’t drink coffee.

Some fierce creatures don’t drink coffee.

x (F(x)  C(x))

1/22/2014

Predicates - more examples

Universe of discourse
is all creatures.

B(x) = “x is a hummingbird.”

L(x) = “x is a large bird.”

H(x) = “x lives on honey.”

R(x) = “x is richly colored.”

All hummingbirds are richly colored.

No large birds live on honey.

Birds that do not live on honey are dully colored.

1/22/2014

Predicates - more examples

Universe of discourse
is all creatures.

B(x) = “x is a hummingbird.”

L(x) = “x is a large bird.”

H(x) = “x lives on honey.”

R(x) = “x is richly colored.”

All hummingbirds are richly colored.

No large birds live on honey.

Birds that do not live on honey are dully colored.

x (B(x)  R(x))

1/22/2014

Predicates - quantifier negation

No large birds live on honey.

x P(x) means “P(x) is true for some x.”

What about x P(x) ?
Not [“P(x) is true for some x.”]

“P(x) is not true for all x.”

x P(x)

So, x P(x) is the same as x P(x).

x (L(x)  H(x))

x (L(x)  H(x))

1/22/2014

Predicates - more examples

Universe of discourse
is all creatures.

B(x) = “x is a hummingbird.”

L(x) = “x is a large bird.”

H(x) = “x lives on honey.”

R(x) = “x is richly colored.”

All hummingbirds are richly colored.

No large birds live on honey.

Birds that do not live on honey are dully colored.

x (L(x)  H(x))

1/22/2014

Predicates - more examples

Universe of discourse
is all creatures.

B(x) = “x is a hummingbird.”

L(x) = “x is a large bird.”

H(x) = “x lives on honey.”

R(x) = “x is richly colored.”

All hummingbirds are richly colored.

No large birds live on honey.

Birds that do not live on honey are dully colored.
 x (H(x)  R(x))

1/22/2014

Predicates - quantifier negation

Not all large birds live on honey.

x P(x) means “P(x) is true for every x.”

What about x P(x) ?
Not [“P(x) is true for every x.”]

“There is an x for which P(x) is not true.”

x P(x)

So, x P(x) is the same as x P(x).

x (L(x)  H(x))

x (L(x)  H(x))

1/22/2014

Predicates - quantifier negation

So, x P(x) is the same as x P(x).

So, x P(x) is the same as x P(x).

General rule: to negate a quantifier, move negation to

the right, changing quantifiers as you go.

