
Lecture 4                                     Jan 27 
 

Topics 

 

 Quick review of Section 1.3 and completion 

 Section 1.4 Chapter 1 

 Section 1.5 Nested quantifiers 

  

Slides adapted from the author: Kenneth Rosen, 7th edition 



Topics covered 

 Predicate Logic (First-Order Logic (FOL), Predicate 
Calculus) 

 The Language of Quantifiers 

 Logical Equivalences 

 Nested Quantifiers 

 Translation from Predicate Logic to English 

 Translation from English to Predicate Logic 

 

 

 



Section 1.4 Predicate Logic 

 Predicates  

 Variables 

 Quantifiers 

 Universal Quantifier 

 Existential Quantifier 

 Negating Quantifiers 

 De Morgan’s Laws for Quantifiers 

 Translating English to Logic 

 

 

 



Propositional Logic Not Enough 

 If we have:  

 “All men are mortal.” 

 “Socrates is a man.” 

 Does it follow that “Socrates is mortal?” 

 Can’t  be represented in propositional logic. Need a 
language that talks about objects, their properties, and 
their relations.  

 Later we’ll see how to draw inferences.  



Introducing Predicate Logic 

 Predicate logic uses the following new features: 

 Variables:   x, y, z 

 Predicates:   P(x), M(x) 

 Quantifiers (to be covered in a few slides): 

 Propositional functions are a generalization of 
propositions.  

 They contain variables and a predicate, e.g., P(x) 

 Variables can be replaced by elements from their domain. 

 



Propositional Functions 

 Propositional functions become propositions (and have 
truth values) when their variables are each replaced by a 
value from the domain (or  bound by a quantifier, as we 
will see later). 

 The statement P(x) is said to be the value of the 
propositional function P at x.  

 For example, let P(x) denote  “x > 0” and the domain be 
the integers. Then: 
P(-3)   is false. 

P(0)   is false. 

P(3)  is true.  

 Often the domain is denoted by U. So in this example U 
is the integers. 

 



Examples of Propositional Functions 

 Let “x + y = z” be denoted by  R(x, y, z) and U (for all three 
variables) be the integers. Find these truth values:  
 R(2,-1,5) 

 Solution:  F 

 R(3,4,7) 
 Solution: T 

 R(x, 3, z) 
 Solution: Not a Proposition 

 Now let  “x - y = z” be denoted by Q(x, y, z), with U as the 
integers. Find these truth values: 
 Q(2,-1,3) 

  Solution:  T 

 Q(3,4,7) 
  Solution: F 

  Q(x, 3, z) 
  Solution:  Not a Proposition 

 
 



Compound Expressions 
 Connectives from propositional logic carry over to predicate 

logic.  
 
 If P(x) denotes  “x > 0,” find these truth values: 

P(3) ∨ P(-1)      Solution: T 
P(3) ∧ P(-1)      Solution: F 
P(3) → P(-1)     Solution: F 
P(3) → P(-1)     Solution: T 
 

 Expressions with variables are not propositions and therefore 
do not have truth values.  For example, 
P(3) ∧ P(y)       
P(x) → P(y)  
     

 When used with quantifiers (to be introduced next), these 
expressions (propositional functions) become propositions. 

 
 



Quantifiers 

 We need quantifiers to express the meaning of English 
words including all and some: 
 “All men are Mortal.” 

 “Some cats do not have fur.” 

 The two most important quantifiers are: 

 Universal Quantifier, “For all,”   symbol:  

 Existential Quantifier, “There exists,”  symbol:  
 We write  as in x P(x) and x P(x). 

 x P(x) asserts P(x) is true for every x in the domain. 

 x P(x) asserts P(x) is true for some x in the domain. 

 The quantifiers are said to bind the variable x in these 
expressions.  

 

 



Universal Quantifier 

 x P(x)  is read as “For all x, P(x)” or “For every x, P(x)” 

 Examples: 

  If P(x) denotes  “x > 0” and U is the integers, then x P(x) is 
false. 

 If P(x) denotes  “x > 0” and U  is the positive integers, then     x 
P(x) is true. 

 If P(x) denotes  “x is even” and U  is the integers,  then  x P(x) 
is false. 

 

 

 



Existential Quantifier 

 x P(x) is read as “For some x, P(x)”,  or as “There is an 
x such that P(x),”  or “For at least one x, P(x).”  

 Examples: 

  If P(x) denotes  “x > 0” and U  is the integers, then x P(x) is 
true. It is also true if U is the positive integers. 

 If P(x) denotes  “x < 0” and U  is the positive integers,  then     
x P(x) is false. 

 If P(x) denotes  “x is even” and U  is the integers,  then     x 
P(x) is true. 

 



Thinking about Quantifiers 

 When the  domain of discourse is finite, we can think of 
quantification as looping through the elements of the 
domain. 

 To evaluate x P(x) loop through all x in the domain.  
 If at every step P(x) is true, then x P(x) is true.  

 If at a step P(x) is false, then x P(x) is false and the loop 
terminates.  

 To evaluate x P(x) loop through all x in the domain.  
 If  at some step, P(x) is true, then x P(x) is true and the loop 

terminates.  

 If the loop ends without finding an x for which P(x) is true, then 
x P(x) is false. 

 Even if the domains are infinite, we can still think of the 
quantifiers this fashion, but the loops will not terminate in 
some cases. 

 

 
 



Properties of Quantifiers 

 The truth value of x P(x)  and  x P(x)  depend on both 
the propositional function P(x) and on  the domain U.  

 Examples: 

 If U is the  positive integers and P(x) is the statement           
“x < 2”, then x P(x)   is true, but  x P(x)  is false.  

 If U is the negative integers and P(x) is the statement           
“x < 2”, then both x P(x)  and   x P(x)  are true.  

 If U consists of 3, 4, and 5,  and P(x) is the statement           
“x > 2”, then  both x P(x)   and  x P(x)  are true. But if 
P(x) is the statement “x < 2”, then  both x P(x)   and             
 x P(x)  are false.  

 

 



Precedence of Quantifiers 

 The quantifiers  and   have higher precedence than 
all the logical operators. 

 For example, x P(x) ∨ Q(x)  means (x P(x))∨ Q(x)   

 x (P(x) ∨ Q(x)) means something different. 

 Unfortunately, often people write x P(x) ∨ Q(x)  when 
they mean  x (P(x) ∨ Q(x)).  



Translating from English to Logic 

Example 1:  Translate the following sentence into 
predicate logic: “Every student in this class has taken a 
course in Java.” 

Solution: 

  First decide on the domain U.  

Solution 1: If U is all students in this class, define a 
propositional function J(x) denoting “x has taken a 
course in Java” and translate as x J(x).  

Solution 2: But if U is all people, also define a 
propositional  function S(x) denoting “x is a student in 
this class” and translate as     x (S(x)→ J(x)).  

             x (S(x) ∧ J(x))  is not correct.  What does it mean? 

 



Translating from English to Logic 

Example 2: Translate the following sentence into 
predicate logic: “Some student in this class has taken a 
course in Java.”  

Solution: 

First decide on the domain U.  

Solution 1: If U is all students in this class, translate as  

                           x J(x) 

Solution 1: But if U is all people, then translate as                 
x (S(x) ∧ J(x))  
        x (S(x)→ J(x)) is not correct. What does it mean? 

 



Returning to the Socrates Example  

 Introduce the  propositional functions Man(x) 
denoting “x is a man” and  Mortal(x) denoting “x is 
mortal.”  Specify the  domain as all people. 

 The two premises are: 

 

 The conclusion is: 

 

 

 Later we will show how to prove that the conclusion 
follows from the premises. 

 



Equivalences in Predicate Logic 

 Statements involving predicates and quantifiers are 
logically equivalent if and only if they have the same 
truth value  

 for every predicate substituted into these statements and  

 for every domain of discourse used for the variables in the 
expressions.  

 The notation S ≡T  indicates that S and T  are logically 
equivalent.  

 Example:  x ¬¬S(x) ≡ x S(x) 



Thinking about Quantifiers as 

Conjunctions and Disjunctions 
 If the domain is finite, a universally quantified proposition is 

equivalent to a conjunction of propositions without 
quantifiers and an existentially quantified proposition is 
equivalent to  a disjunction of propositions without 
quantifiers.  

 If U consists of the integers 1,2, and 3: 
 
 
 
 
 

 Even if the domains are infinite, you can still think of the 
quantifiers in this fashion, but the equivalent expressions 
without quantifiers will be infinitely long. 
 
 

 



Negating Quantified Expressions 

 Consider x J(x) 

 “Every student in your class has taken a course in Java.” 

  Here J(x)  is “x has taken a course in calculus” and  

  the domain is students in your class.  

 Negating the original statement gives “It is not the case 
that every student in your class has taken Java.” This 
implies that “There is a student in your class who has 
not taken calculus.” 

      Symbolically  ¬x J(x)  and x ¬J(x) are equivalent 

 



Negating Quantified Expressions(contd) 

 Now Consider  x J(x) 

 “There is a student in this class who has taken a course in 
Java.” 

 Where J(x)  is “x has taken a course in Java.” 

 Negating the original statement gives “It is not the case 
that there is a student in this class who has taken Java.” 
This implies that “Every student in this class has not 
taken Java” 

      Symbolically  ¬ x J(x)  and  x ¬J(x) are equivalent 



De Morgan’s Laws for Quantifiers 

 The rules for negating quantifiers are: 

 

 

 

 The reasoning in the table shows that: 

 

 

 

 These are important. You will use these.  



Translation from English to Logic 

Examples: 

1. “Some student in this class has visited Mexico.” 

   Solution: Let M(x) denote “x has visited Mexico” and 
S(x) denote “x is a student in this class,”  and U  be all 
people. 

                      x  (S(x) ∧ M(x)) 

2. “Every student in this class has visited Canada or 
Mexico.” 

  Solution: Add C(x) denoting “x has visited Canada.” 

                    x (S(x)→ (M(x)∨C(x))) 

 



More examples of translation 

 U = {fleegles, snurds, thingamabobs} 

 F(x): x is a fleegle 

 S(x): x is a snurd 

 T(x): x is a thingamabob 

    Translate “Everything is a fleegle” 

 

Solution: x F(x) 

 



Translation (cont) 

 U = {fleegles, snurds, thingamabobs} 
 F(x): x is a fleegle 

 S(x): x is a snurd 

 T(x): x is a thingamabob 

    “Nothing is a snurd.” 

 

      Solution: ¬x S(x)    

 

What is this equivalent to? 

      Solution:   x ¬ S(x)  



Translation (cont) 

 U = {fleegles, snurds, thingamabobs} 

F(x): x is a fleegle 

S(x): x is a snurd 

T(x): x is a thingamabob 

  “All fleegles are snurds.” 

 

   Solution: x (F(x)→ S(x)) 

 

 

 



Translation (cont) 

 U = {fleegles, snurds, thingamabobs} 

 F(x): x is a fleegle 

 S(x): x is a snurd 

 T(x): x is a thingamabob 

   “Some fleegles are thingamabobs.” 

 

    Solution: x (F(x) ∧ T(x)) 

 



Translation (cont) 

 U = {fleegles, snurds, thingamabobs} 
 F(x): x is a fleegle 

 S(x): x is a snurd 

 T(x): x is a thingamabob 

    “No snurd is a thingamabob.” 

 

      Solution: ¬x (S(x) ∧ T(x))   

 

What is this equivalent to? 

      Solution: x (¬S(x) ∨ ¬T(x)) 



Translation (cont) 

 U = {fleegles, snurds, thingamabobs} 

 F(x): x is a fleegle 

 S(x): x is a snurd 

 T(x): x is a thingamabob 

   “If any fleegle is a snurd then it is also a  thingamabob.” 

 

      Solution: x ((F(x) ∧ S(x))→ T(x)) 

 



System Specification Example 

 Predicate logic is used for specifying properties that systems must satisfy. 

 For example, translate into predicate logic: 

 “Every mail message larger than one megabyte will be compressed.” 

 “If a user is active, at least one network link will be available.” 

 Decide on predicates and domains (left implicit here) for the variables: 

 Let L(m, y) be “Mail message m is larger than y megabytes.” 

 Let C(m) denote “Mail message m will be compressed.” 

 Let A(u) represent “User u is active.” 

 Let S(n, x) represent “Network link n is state x. 

 Now we have: 

 

 

 

 

 

 



Lewis Carroll Example 

 The first two are called premises and the third is called the 
conclusion.  

 “All lions are fierce.” 

 “Some lions do not drink coffee.” 

 “Some fierce creatures do not drink coffee.”  

 Here is one way to translate these statements to predicate 
logic. Let P(x), Q(x), and R(x) be the propositional functions 
“x is a lion,” “x is fierce,” and “x drinks coffee,” respectively. 

 x (P(x)→ Q(x)) 

 x (P(x) ∧ ¬R(x)) 

 x (Q(x) ∧ ¬R(x)) 

 Later we will see how to prove that the conclusion follows 
from the premises. 

 



Sec 1.5 Nested quantifiers 

 Nested Quantifiers  

 Order of Quantifiers 

 Translating from Nested Quantifiers into English 

 Translating Mathematical Statements into Statements 
involving Nested Quantifiers. 

 Translated English Sentences into Logical Expressions. 

 Negating Nested Quantifiers. 

 

 

 



Nested Quantifiers 

 Nested quantifiers are often necessary to express the 
meaning of sentences in English as well as important 
concepts in computer science and mathematics.  

     Example: “Every real number has an inverse” is    

                  x y(x + y = 0)  

        where the domains of x and y are the real numbers. 

 We can also think of nested propositional functions: 

 x y(x + y = 0) can be viewed as x Q(x) where Q(x) is           
y P(x, y) where P(x, y) is (x + y = 0)  



Order of Quantifiers 

Examples: 

1. Let P(x,y) be the statement “x + y = y + x.” Assume 
that U is the real numbers. Then x yP(x,y)  and     
y xP(x,y) have the same truth value. 

 

2. Let Q(x,y) be the statement “x + y = 0.” Assume that U 
is the real numbers. Then x yP(x,y)  is true, but      
y xP(x,y) is false. 

 



Questions on Order of Quantifiers  

    Example 1: Let U be the real numbers, 

    Define P(x,y) : x ∙ y = 0 

    What is the truth value of the following? 

1. xy P(x,y)        

     Answer: False 

2. xy P(x,y)         

     Answer: True 

3. xy P(x,y)        

     Answer: True 

4. x y P(x,y)      

       Answer: True 

 

 

 

 

 

 



Questions on Order of Quantifiers 

   Example 2: Let U be the real numbers, 

                  Define P(x,y) : x / y = 1 

   What is the truth value of the following? 

1. xyP(x,y)        

      Answer: False 

2. xyP(x,y)         

     Answer: True 

3. xy P(x,y)        

    Answer: False 

4. x  y P(x,y)      

   Answer: True 

 



Quantifications of Two Variables 

Statement When True? When False 

 
 
 

P(x,y) is true for every 
pair x,y. 

There is a pair x, y for 
which P(x,y) is false. 

 
 

For every x there is a y for 
which P(x,y) is true. 

There is an x such that 
P(x,y) is false for every y. 

 
 

There is an x for which 
P(x,y) is true for every y. 

For every x there is a y for 
which P(x,y) is false. 

 
 
 

There is a pair x, y for 
which P(x,y) is true. 

P(x,y) is false for every 
pair x,y 



Translating Nested Quantifiers into English 

Example 1: Translate the statement  

                x  (C(x )∨ y (C(y ) ∧ F(x, y)))  

     where C(x) is “x has a computer,” and F(x,y) is “x and y are 
friends,” and the domain for both x and y consists of all students 
in your school.  

Solution: Every student in your school has a computer or has a 
friend who has a computer.  

 

Example 2:  Translate the statement 

        xy z ((F(x, y)∧ F(x,z) ∧ (y ≠z))→¬F(y,z)) 

Solution: Every student none of whose friends are also 
friends with each other. 



Mathematical Statements into Logic  

  Example : Translate “The sum of two positive integers is 
always positive” into a logical expression. 

 

  Solution: 
1. Rewrite the statement to make the implied quantifiers and 

domains explicit: 
“For every two integers, if these integers are both positive, then the sum 

of these integers is positive.” 

2. Introduce the variables x and y, and specify the domain, to 
obtain: 

“For all positive integers x and y, x + y is positive.” 

3. The result is: 
            x  y ((x > 0)∧ (y > 0)→ (x + y > 0)) 

 where the domain of both variables consists of all integers 

 



Translation Example 

Example: Use quantifiers to express the statement 
“There is a woman who has taken a flight on every 
airline in the world.” 

 

Solution: 

1. Let P(w, f) be “w has taken f  ” and Q(f, a) be “f  is a 
flight on a .”  

2. The domain of w is all women, the domain of f is all 
flights, and the domain of a is all airlines. 

3. Then the statement can be expressed as: 

             w a f  (P(w, f ) ∧ Q(f, a)) 



Questions on Translation from English 

 

Example 1: “Brothers are siblings.” 

 

Let B(x, y) stand for x is a brother of y and S(x, y) stand for 
x is a sibling of y. 



Questions on Translation from English 

Example 1: “Brothers are siblings.” 

 

Solution: x y (B(x,y) → S(x,y)) 



Questions on Translation from English 

Example 2: “Siblinghood is symmetric.” 

 

We should translate the statement: “if x is a sibling of y, 
then y is a sibling of x.”  

 

- This is the definition of symmetric relation. (In Chapter 2, 
various types of relations and their properties will be 
studied.) 



Questions on Translation from English 

Example 2: “Siblinghood is symmetric.” 

 

Solution: x y (S(x,y) → S(y,x)) 



Questions on Translation from English 

Answers for the next four examples:  

 

Example 3: “Everybody loves somebody.” 

            Solution: x y L(x,y) 

Example 4: “There is someone who is loved by everyone.” 

            Solution: y x L(x,y) 

Example 5: “There is someone who loves someone.” 

            Solution: x y L(x,y) 

Example 6: “Everyone loves himself” 

            Solution: x L(x,x) 



Negating Nested Quantifiers 

Example 1: Recall the logical expression developed earlier: 

                 w a f  (P(w,f ) ∧ Q(f,a)) 

 Part 1: Use quantifiers to express the statement that “There 
does not exist a woman who has taken a flight on every 
airline in the world.” 

    Solution: ¬w a f  (P(w,f ) ∧ Q(f,a))  
  



Negating Nested Quantifiers 

Part 2: Now use De Morgan’s Laws to move the negation as far 
inwards as possible. 

     Solution: 

1.  ¬w a f  (P(w,f ) ∧ Q(f,a))  

2.  w ¬ a f  (P(w,f ) ∧ Q(f,a))  by De Morgan’s for  

3.  w  a ¬ f  (P(w,f ) ∧ Q(f,a))  by De Morgan’s for  

4. w  a f ¬ (P(w,f ) ∧ Q(f,a))   by De Morgan’s for  

5. w  a f (¬ P(w,f ) ∨ ¬ Q(f,a))  by De Morgan’s for ∧. 



Negating Nested Quantifiers 

Part 3: Can you translate the result back into English? 

       Solution: 

        “For every woman there is an airline such that for all 
flights, this woman has not taken that flight or that flight 
is not on this airline” 



Some Questions about Quantifiers 

 Can you switch the order of quantifiers?  

  Is this a valid equivalence? 

          

Solution: Yes! The left and the right side will always have 
the same truth value. The order in which x and y are 
picked does not matter. 

 



Some Questions about Quantifiers 

 Is this a valid equivalence? 

          

 

Solution: No! The left and the right side may have 
different truth values for some propositional functions 
for P. Try “x + y = 0” for P(x,y) with U being the integers. 
The order in which the values of x and y are picked does 
matter. 

 

 



Some Questions about Quantifiers 

 Can you distribute quantifiers over logical 
connectives?  

 Is this a valid equivalence? 

          

 

Solution: Yes! The left and the right side will always have 
the same truth value no matter what propositional 
functions are denoted by P(x) and Q(x). 

 

 



Some Questions about Quantifiers 

 Is this a valid equivalence? 

          

 

 Solution: No! The left and the right side may have 
different truth values. Pick “x is a fish” for P(x) and “x has 
scales” for Q(x) with the domain of discourse being all 
animals. Then the left side is false, because there are 
some fish that do not have scales.  But the right side is 
true since not all animals are fish. 

 

 


