
Lecture 7                               Feb 4, 14 

 Sections 1.7 and 1.8 

 Some problems from Sec 1.8 



Section Summary 

 Proof by Cases 

 Existence Proofs 

 Constructive 

 Nonconstructive 

 Disproof by Counterexample 

 Nonexistence Proofs 

 Uniqueness Proofs 

 Proof Strategies 

 Proving Universally Quantified Assertions 

 

 



Proof by Cases 

 To prove a conditional statement of the form: 

 

 Use the tautology 

 

 

 

 Each of the implications                   is a case.  



Proof by Cases 

Example: Let  a @ b = max{a, b} = a  if a ≥ b,  otherwise                    
a @ b = max{a, b} = b.  

Show that for all  real numbers a, b, c  
                (a @b) @ c = a @ (b @ c) 
(This means the operation @ is associative.) 
 
Proof: Let a, b, and c be arbitrary real numbers. 
Then one of the following 6 cases must hold.  

1. a ≥ b ≥ c 
2. a ≥ c ≥ b 
3. b ≥ a ≥c 
4. b ≥ c ≥a 
5. c ≥ a ≥ b 
6. c ≥ b ≥ a 

 
 Continued on next slide  



Proof by Cases 

Case 1: a ≥ b ≥ c 

(a @ b) = a, a @ c = a, b @ c = b 

Hence (a @ b) @ c = a = a @ (b @ c) 

Therefore the equality holds for the first case. 

 

      A complete proof requires that the equality be shown 
to hold for all 6 cases. But the proofs of the 
remaining cases are similar. Try them. 

 

 

 

 

 



Without Loss of Generality 
    Example: Show that if x and y are integers  and both x∙y and 

x+y are even, then both x and y are even. 
     Proof: Use a proof by contraposition. Suppose  x and y are 

not both even. Then, one or both are odd. Without loss of 
generality, assume that x is odd. Then  x = 2m + 1 for some 
integer k.  

 
    Case 1: y is even. Then y = 2n for some integer n, so                                                  

x + y = (2m + 1) + 2n = 2(m + n) + 1 is odd. 
 
    Case 2: y is odd. Then y = 2n + 1 for some integer n, so                                            

x ∙ y = (2m + 1) (2n + 1) = 2(2m ∙ n +m + n) + 1 is odd. 
  
    We only cover the case where x is odd because the case 

where y is odd is  similar. The use phrase without  loss of 
generality (WLOG) indicates this.  

 
      



Existence Proofs 

 Proof of theorems of the form                   . 
 Constructive existence proof:  

 Find an explicit value of c, for which  P(c) is true. 
 Then                   is   true by Existential Generalization (EG). 

     
  Example: Show that there is a positive integer that can be  written 

as the sum of cubes of positive integers in two different ways: 
     Proof:        1729 is such a number since  
                           1729 = 103  + 93  = 123  + 13 

 
  How did we know to choose the number 1729? Is there a smaller 

number that works? Do you know how to search the next number 
that can be written as a sum of two cubes in two ways using a 
computer?  

  if we replace cube by square, we can find a number more easily. 
How would you find it?    
 



Counterexamples 

 Recall                                     .   

 To establish that                  is true (or                is false) 
find a c such that P(c) is true or P(c) is false.  

 In this case c is called a counterexample to the 
assertion              . 

    Example: “Every positive integer is the sum of the 
squares of 3 integers.” The integer 7 is a 
counterexample.  So the claim is false. 



Showing that 7 is a counterexample 

     

Example: “Every positive integer is the sum of the squares of 
3 integers.” The integer 7 is a counterexample.  So the claim is 
false. 
 
How to show that 7 can’t be written as a sum of 3 squares?  
 
Proof: If 7 = a2 + b2 + c2, then 0 <= a, b, c <= 2. Why? 
 
Now we can consider all possible cases. There are 27 cases to 
consider for (a, b, c): (0, 0, 0), (0, 0, 1), …, (2, 2, 2). In all the 
cases, we can check that a2 + b2 + c2 ≠ 7 



Uniqueness Proofs 
 Some theorems asset the existence of a unique element with a 

particular property, !x P(x). The two parts of a uniqueness proof 
are  
 Existence: We show that an element x with the property exists. 

 Uniqueness: We show that if y≠x, then y does not have the property. 

 

Example: Show that if a and b are real numbers and  a ≠0, then 
there is a unique real number r  such that  ar + b = 0. 

     Solution: 
 Existence: The real number r = −b/a is a solution of ar + b = 0 

because a(−b/a) + b = −b + b =0. 

 Uniqueness: Suppose that s is a real number such that   as + b = 0. 
Then ar + b = as + b, where r = −b/a.  Subtracting b from both 
sides and dividing by a shows that r = s.   



Proof Strategies for proving p → q  

 Choose a method. 

 First try a direct method of proof.   

 If this does not work, try an indirect method (e.g., try to prove 
the contrapositive). 

 For whichever method you are trying, choose a strategy. 

 First try forward reasoning.  Start with the axioms and known 
theorems and construct a sequence of steps that end in the 
conclusion.  Start with p and prove q, or start with ¬q and 
prove ¬p. 

 If this doesn’t work, try backward reasoning. When trying to 
prove q,  find a statement p that we can prove with the  
property p → q. 



Backward Reasoning  
    Example: Suppose that two people play a game taking turns removing, 1, 2, 

or 3 stones at a time from a pile that begins with 15 stones. The person who 
removes the last stone wins the game. Show that the first player can win the 
game no matter what the second player does. 

 
    Proof: Let n be the last step of the game. 

Step n:    Player1 can win if the pile contains 1,2, or 3 stones.  
Step n-1: Player2 will have to leave such a pile if the pile that he/she is faced 

with has 4 stones.  
Step n-2: Player1  can leave 4 stones when there are 5,6, or 7 stones left at the 

beginning of his/her turn.  
Step n-3: Player2  must leave  such a pile, if there are  8 stones .  
Step n-4: Player1 has to have a pile with 9,10, or 11 stones to ensure that there 

are 8 left.  
Step n-5: Player2  needs to be faced with  12 stones to be forced to leave 9,10, 

or 11.  
Step n-6: Player1  can leave  12 stones by removing 3 stones.  

    Now reasoning forward, the first player can ensure a win by removing 3 
stones and leaving 12. 



Universally Quantified Assertions 

 To prove theorems of the form               ,assume x is an 
arbitrary member of the domain and show that P(x) 
must be true. Using UG it follows that               . 

    Example: An integer x is even if and only if x2 is even.  

    Solution: The quantified assertion is  

        x [x is even  x2  is even] 

    We assume x is arbitrary. 

    Recall that                  is equivalent to 

    So, we have  two cases to consider. These are 
considered in turn. 

 Continued on next slide  



 Universally Quantified Assertions 

   Case 1. We show that if x is even then x2  is even using 
a direct proof (the only if part or necessity). 

   If x is even then x = 2k for some integer k. 

   Hence x2 =  4k2 = 2(2k2 ) which is even since it is an 
integer divisible by 2. 

  This completes the proof of case 1. 

Case 2 on next slide  



Universally Quantified Assertions 

   Case 2. We show that if x2 is even then x  must be  even (the 
if part or sufficiency). We use a proof by contraposition. 

   Assume x is  not even  and then show that x2  is not even.  

   If x is not even then it must be odd. So, x = 2k + 1 for some 
k. Then  x2 =   (2k + 1)2 = 4k2 + 4k + 1 =  2(2k2 + 2k) + 1 

    which is odd and hence not even. This completes the proof 
of case 2. 

   Since x was arbitrary, the result follows by UG. 

   Therefore we have shown that x is even if and only if  x2 is 
even.  

   



Proof and Disproof: Tilings 

Example 1: Can we tile the standard checkerboard 
using dominos? 

Solution: Yes! One example provides a constructive 
existence proof. 

The Standard Checkerboard 

Two Dominoes 

One Possible Solution 



Tilings 

   Example 2: Can we tile a checkerboard obtained by 
removing one of the four corner squares of a standard 
checkerboard? 

    Solution:  

 Our checkerboard has 64 − 1 = 63 squares.  

 Since each domino has two squares, a board with a tiling 
must have an even number of squares. 

 The number  63 is not even.  

 We have a contradiction. 

 



Tilings  

   Example 3: Can we tile a board obtained by removing 
both the upper left and the lower right squares of a 
standard checkerboard?  

Nonstandard Checkerboard Dominoes 

Continued on next slide  



Tilings 

  Solution:  

 There are 62 squares in this board.  

 To tile it we need 31 dominos.  

 Key fact: Each domino covers one black and one white 
square.  

 Therefore the tiling covers 31 black squares and 31 
white squares. 

 Our board has either 30 black squares and 32 white 
squares or 32 black squares and 30 white squares.   

 Contradiction! 



Additional Proof Methods 

 Later we will see many other proof methods: 

 Mathematical induction, which is a useful method for 
proving statements of the form n P(n), where the 
domain consists of all positive integers. 

 Structural induction, which can be used to prove such 
results about recursively defined sets. 

 Cantor diagonalization is used to prove results about the 
size of infinite sets. 

 Combinatorial proofs use counting arguments.  



Some problems from Sec 1.8 
 Problem 2: Prove that there are no positive perfect 

cubes less than 1000 that are the sum of the cubes of 
two positive integers.  

 
Create a table in which each row is a perfect cube between 1 
and 1000, and each column is a perfect cube between 1 and 
1000. Fill the table with all possible ways of adding a row 
value and a column value. Check that the table (that has 100 
entries) does not have 1000 in it. 

 

In the next slide, we will show we can automate this process 
by writing a program in Python that will search for two 
numbers p and q such that p > 0, q > 0 and p3 + q3 = K for a 
given value K. 



Program for problem 2, Sec 1.8  

    



Problem 9, Sec 1.8 

Prove that there are 100 consecutive positive integers that are 
not perfect squares. Is your proof constructive or 
nonconstructive? 
 
Proof: Consider 1002 = 10,000. What is the next perfect 
square? It must be 1012 = 10201. How many numbers are 
between 10,000 and 10201? 
 
This is a constructive proof since we explicitly constructed two 
perfect squares and showed that they are separated by more 
than 100 numbers and none of the intervening numbers can 
be perfect squares. 



Problem 10, Sec 1.8 

Prove that either A = 2 · 10500 + 15 or B = 2 · 10500 + 16 is not a 
perfect square. Is your proof constructive or nonconstructive? 
 
Proof: (i) To prove such results, you should look for a property that perfect squares 
have, and then show that A or B does not have that property. 
 
Note how we are using modus tollens here: 
 
•  Ax (x is a perfect square  P(x)) 
•  The number A does not have property p, i.e., ~P(A) 
 
From these two, we use existential instantiation and modus tollens, and conclude 
that A is not a perfect square. 
 
What property can we use here? One that works is: 
  P(x):  if x is odd   x leaves remainder 1 when divided by 4. 
 
The details will be presented in class. 

 
 



Problem 26, Sec 1.8 

Suppose that five ones and four zeros are arranged around a circle. Between 
any two equal bits you insert a 0 and between any two unequal bits you 
insert a 1 to produce nine new bits. Then you erase the nine original bits. 
Show that when you iterate this procedure, you can never get nine zeros. 
[Hint: Work backward, assuming that you did end up with nine zeros.] 
 
Proof: You can try to construct a proof using the hint. 
 
We will give an equally easy, direct proof (using forward reasoning). 
 
Claim (aka Lemma): A pattern P with at least one 0 and one 1 will always 
generate a new pattern with at least one 0 and one 1. 
 
Proof sketch: In any circular string of 0’s and 1’s with at least one 0 and at 
least one 1, there will be two adjacent bits that are different, and also two 
adjacent bits that are the same.  
 
From the lemma, the claim easily follows. 


