
  Definition: Let A and B be nonempty sets. A 
function f  from A to B, denoted  f: A → B is an 
assignment of each element of A to exactly one 
element of B.  We write  f(a) = b  if b is the unique 
element of B assigned by the function f to the 
element a of A. 
Functions are sometimes
     called mappings or 
     transformations.
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Functions
Given a function f: A → B: 
We say f maps A to B or 
        f is a mapping from  A to B.
A is called the domain of f.
B is called the codomain of f.
If f(a) = b, 

then b is called the image of a under f.
a is called the preimage of b.

The range of f is the set of all images of points in A 
under f. We denote it by f(A).

Two functions are equal when they have the same 
domain, the same codomain and map each element of 

the domain to the same element of the codomain. 



Injections
   Definition: A function f is said to be 
one-to-one ,  or injective, if and only if f(a) = 
f(b) implies that  a = b for all a and b in the 
domain of f. A function is said to be an injection 
if it is one-to-one.
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Surjections
  Definition: A function f from A to B is called 
onto or surjective, if and only if for every 
element               there is an element               
with                   .  A function f is called a 
surjection if it is onto.
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Bijections
   Definition: A function f is a one-to-one 
correspondence, or a bijection, if it is both 
one-to-one and onto (surjective and injective).
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Showing that f is one-to-one or 
onto



Showing that f is one-to-one or 
onto
   Example 1: Let f be the function from 
{a,b,c,d} to {1,2,3} defined by f(a) = 3, f(b) = 
2, f(c) = 1, and f(d) = 3. Is f an onto function?
    Solution: Yes, f is onto since all three 
elements of the codomain are images of 
elements in the domain. If the codomain were 
changed to {1,2,3,4}, f  would not be onto. 
   Example 2: Is the function  f(x) = x2    from 
the set of integers onto?  
   Solution: No, f is  not onto because there is 
no integer x with x2  = −1, for example. 



Inverse Functions
   Definition: Let f be a bijection from A to B. 
Then the inverse of f, denoted          , is the 
function from B to A defined as
   
No inverse exists unless f is a bijection. Why?
      



Questions
   Example 1: Let f be the function from 
{a,b,c} to {1,2,3} such that f(a) = 2, f(b) = 3, 
and f(c) = 1. Is f invertible and if so what is its 
inverse?

Solution: The function f is invertible 
because it is a one-to-one correspondence. 
The inverse function f-1  reverses the 
correspondence given by f, so f-1 (1) = c,    
f-1 (2) = a,  and f-1 (3) = b.



Composition
Definition: Let f: B → C, g: A → B. The 

composition of f with g, denoted            is the 
function from A to C defined by



Composition
   Example 1: If                       and                      
            , then 

     and  



Graphs of Functions
Let f be a function from the set A to the set B. 

The graph of the function f is the set of 
ordered pairs   {(a,b) | a ∈A and f(a) = b}.

Graph of f(n) = 2n + 1 
    from Z to Z

Graph of f(x) = x2 
    from Z to Z



Proving Properties of 
Functions 
   Example: Prove that x is a real number, then
                          ⌊2x⌋= ⌊x⌋ + ⌊x + 1/2⌋
    Solution: Let x = n + ε, where n is an integer and 0 ≤ ε< 1. 
  Case 1:    ε < ½

2x = 2n + 2ε  and  ⌊2x⌋ = 2n, since 0 ≤ 2ε< 1.
⌊x + 1/2⌋ = n, since x + ½ = n + (1/2 + ε ) and 0 ≤ ½ +ε < 1. 
Hence, ⌊2x⌋ = 2n and ⌊x⌋ + ⌊x + 1/2⌋ = n + n  = 2n.

  Case 2:      ε ≥ ½ 
2x = 2n + 2ε =  (2n + 1) +(2ε  − 1)  and ⌊2x⌋ =2n + 1,                  

   since 0 ≤ 2 ε - 1< 1. 
⌊x + 1/2⌋ = ⌊ n + (1/2 + ε)⌋ = ⌊ n + 1 +  (ε – 1/2)⌋ = n + 1 since     

  0 ≤ ε – 1/2< 1. 
Hence,  ⌊2x⌋ = 2n + 1 and ⌊x⌋ + ⌊x + 1/2⌋ = n + (n + 1)  = 2n + 

1.           



Sequences
  Definition: A sequence is a function from a 
subset of the integers (usually either the set {0, 
1, 2, 3, 4, …..} or   {1, 2, 3, 4, ….} ) to a set S.
The notation  an   is used to denote the image 

of the integer n.  We can think of an    as the 
equivalent of f(n) where f is a function from  
{0,1,2,…..} to S.  We call an  a term of the 
sequence.

   



Sequences 
Example: Consider the sequence            where

  



Geometric Progression
   Definition: A geometric progression is a 
sequence of the form:
    where the initial term a and the common 
ratio r are real numbers.
   Examples:

1.Let a = 1 and r = −1. Then:

2.Let  a = 2 and r = 5. Then:

3.Let a = 6 and r = 1/3. Then:



Arithmetic Progression
   Definition: A arithmetic progression is a sequence of the 
form:
    where the initial term a and the common difference  d are 
real numbers.
    Examples:

1.Let a = −1 and d = 4: 

2.Let  a = 7 and d = −3: 

3.Let a = 1 and d = 2: 



Strings
   Definition: A string is a finite sequence of 
characters from a finite set (an alphabet).
Sequences of characters or bits  are important 

in computer science.
The empty string is represented by λ.
The string  abcde has length 5.



Recurrence Relations
Definition: A recurrence relation for the 
sequence {an} is an equation that expresses an 
in terms of one or more of the previous terms of 
the sequence, namely, a0, a1, …, an-1, for all 
integers n with n ≥ n0, where n0 is a 
nonnegative integer. 
A sequence is called a solution of a recurrence 

relation if its terms satisfy the recurrence 
relation.

The initial conditions for a sequence specify 
the terms that precede the first term where 
the recurrence relation takes effect. 



Questions about Recurrence 
Relations
   Example 1: Let {an} be a sequence that 
satisfies the recurrence relation an = an-1 + 3  
for n = 1,2,3,4,….  and suppose that a0 = 2.  
What are a1 ,  a2  and a3? 
     [Here a0 = 2 is the initial condition.]

Solution: We see from the recurrence relation that
      a1   =  a0  + 3 = 2 + 3 = 5
      a2   = 5 + 3 = 8
      a3   = 8 + 3 = 11

  



Solving Recurrence 
Relations
Finding a formula for the nth term of the 

sequence generated by a recurrence relation 
is called solving the recurrence relation. 

Such a formula is called a closed formula.



Iterative Solution 
Example
   Method 1: Working upward, forward 
substitution
   Let {an} be a sequence that satisfies the 
recurrence relation an = an-1 + 3  for n = 2,3,4,
….  and suppose that a1 = 2.
      a2   = 2 + 3
      a3   = (2 + 3) + 3 = 2 + 3 ∙ 2 
      a4   =  (2 + 2 ∙ 3) + 3 = 2 + 3 ∙ 3
                    .
                    .
                    .
            an = an-1 + 3  = (2 + 3 ∙ (n – 2)) + 3 = 
2 + 3(n – 1)
  



Iterative Solution 
Example
   Method 2: Working downward, backward 
substitution
    Let {an} be a sequence that satisfies the 
recurrence relation                    an = an-1 + 3  
for n = 2,3,4,….  and suppose that a1 = 2.

           an  = an-1 + 3
                  = (an-2 + 3) + 3 = an-2 + 3 ∙ 2 
           = (an-3 + 3 )+ 3 ∙ 2  = an-3 + 3 ∙ 3
                    .
                    .
                    .
       
                  = a2  + 3(n – 2)   = (a1  + 3) + 
3(n – 2)  = 2 + 3(n – 1)
  



Financial Application
  Example: Suppose that a person deposits 
$10,000.00 in a savings account at a bank 
yielding 11% per year with interest 
compounded annually. How much will be in the 
account after 30 years?
   Let Pn  denote the amount in the account 
after 30 years. Pn  satisfies the following 
recurrence relation:
              Pn = Pn-1 + 0.11Pn-1 = (1.11) Pn-1 
                         with the initial condition  P0   = 
10,000

Continued on next slide 



Financial Application
        
Solution: Forward Substitution
 P1  = (1.11)P0 
 P2  = (1.11)P1 = (1.11)2P0 
 P3  = (1.11)P2 = (1.11)3P0 
                  :
 Pn = (1.11)Pn-1 = (1.11)nP0    =     (1.11)n 
10,000
 Pn = (1.11)n 10,000 (Can prove by induction, 
covered in Chapter 5)
 P30 = (1.11)30 10,000 = $228,992.97



Useful Sequences



Summations
Sum of the terms       
    from the sequence
The notation:

     represents

The variable j is called the index of summation. It runs 
through all the integers starting with its lower  limit  m and 

ending with its upper limit n. 



Product Notation 
(optional)

Product of the terms 
      from the sequence

The notation:

     represents



Geometric Series
Sums of terms of geometric progressions

Proof: Let
To compute Sn , first multiply both sides of 
the equality by r and then manipulate the 
resulting sum as follows: 

Continued on next slide 



Geometric Series

Shifting the index of summation with k = j + 
1.

Removing k = n + 1 term and 
adding k = 0 term.

Substituting S for summation 
formula

∴

if r ≠1

if r = 1

From previous slide.



Some Useful Summation 
Formulae 

Later we 
will prove 
some of 
these by 
induction
.

Proof in text 
(requires calculus)

Geometric Series: 
We just proved 
this.



Cardinality
   Definition: The cardinality of a set A is equal 
to the cardinality of a set B, denoted 
                  |A| = |B|,
    if and only if there is a one-to-one 
correspondence (i.e., a bijection)  from A to B. 
If there is a one-to-one function (i.e., an 

injection) from A to B, the cardinality of A is 
less than or the same as the cardinality of B 
and we write     |A| ≤ |B|. 

When |A| ≤ |B| and A and B have different 
cardinality, we say that the cardinality of A is 
less than the cardinality of B and write |A| < 
|B|. 



Cardinality 
Definition: A set that is either finite or has 

the same cardinality as the set of positive 
integers (Z+) is called countable. A set that is 
not countable is uncountable.

 The  set of real numbers R  is an uncountable 
set.

When an infinite set is countable (countably 
infinite) its cardinality is ℵ0 (where ℵ is aleph, 
the 1st letter of the Hebrew alphabet). We 
write |S| = ℵ0  and say that S has cardinality 
“aleph null.”

     



Showing that a Set is 
Countable

 An infinite set is countable if and only if it is 
possible to list the elements of the set in a 
sequence (indexed by the positive integers). 

The reason for this is that a one-to-one 
correspondence f from the set of positive 
integers to a set S can be expressed in terms 
of a sequence         a1,a2,…, an ,… where a1 = 
f(1), a2  = f(2),…, an = f(n),… 



The Positive Rational Numbers 
are Countable

Constructing  the List

First list p/q with p + q = 2.
Next list p/q with p + q = 3

And so on.

First row q = 1.
Second row q = 
2.
etc.

1, ½, 2, 3, 1/3,1/4, 2/3, …. 



The Positive Rational Numbers 
are Countable
Definition: A rational number can be 

expressed as the ratio of two integers p and q 
such that q ≠ 0.
¾ is a rational number
√2  is not a rational number.

   Example 1: Show that the positive rational 
numbers are countable.
   Solution:The positive rational numbers are 
countable since they can be arranged in a 
sequence:
                       r1 , r2 , r3 ,…   
    The next slide shows how this is done.             
   →



Strings
   Example 2: Show that the set of finite strings 
S over a finite alphabet A is countably infinite.
   Assume an alphabetical ordering of symbols in A
    Solution: Show that the strings can be listed 
in a sequence. First list

1.All the strings of length 0 in alphabetical order.
2.Then all the strings of length 1 in lexicographic 

(as in a dictionary) order.
3.Then all the strings of length 2 in lexicographic 

order. 
4.And so on.

   This implies a bijection from N to S and hence 
it is a countably infinite set.



The Real Numbers are 
Uncountable
Example3: Show that the set of real 
numbers is uncountable.
Solution: The   method is called the 
Cantor  diagnalization argument, and is a 
proof by contradiction.
1.Suppose R is countable. Then the real 
numbers between 0 and 1 are also 
countable (any subset of a countable set 
is countable - an exercise in the text).

2.The real numbers between 0 and 1 can 
be listed in order r1 , r2 , r3 ,… .

3.Let the decimal representation of this 
listing be

4.Form a new real number with the decimal 
expansion

             where
5.r is not equal to any of the r1 , r2 , r3 ,...  
Because it differs from ri   in its ith 
position after the decimal point. Therefore 
there is a real number between 0 and 1 
that is not on the list since every real 
number has a unique decimal expansion. 
Hence, all the real numbers between 0 
and 1 cannot be listed, so the set of real 
numbers between 0 and 1 is uncountable.

6.Since a set with an uncountable subset is 
uncountable (an exercise), the set of real 
numbers is uncountable.

Georg 
Cantor
(1845-1918)



Matrix
   Definition: A matrix is a rectangular array of 
numbers. A matrix with m rows and n columns 
is called an m    n matrix. 

The plural of matrix is matrices.
 A matrix with the same number of rows as columns is 

called square. 
Two matrices are equal if they have the same number of 

rows and the same number of columns and the 
corresponding entries in every position are equal. 

 3    2 matrix



Notation
Let m and n be positive integers and let

The ith row of A is the 1    n matrix [ai1, ai2,
…,ain].   The jth column of A is the m     1 
matrix:

The (i,j)th  element or entry of A is the 
    element aij. We can use A = [aij ] to denote 
the matrix  with its (i,j)th element equal to aij.



Matrix Arithmetic: 
Addition
   Defintion: Let A = [aij] and B = [bij]  be m   
n matrices. The sum of A and B, denoted by A 
+ B, is the m    n matrix that has aij  + bij    as 
its (i,j)th element. In other words, A + B = [aij  
+ bij].
   Example:

   Note that matrices of different sizes can not 
be added.



Matrix Multiplication
    Definition: Let A be an n     k matrix and B be a k     
n matrix. The product of A and B, denoted by AB, is the   
     m    n matrix that has its (i,j)th element equal to the 
sum of the products of the corresponding elments from 
the ith row of A and the jth column of B. In other words,  
if AB = [cij] then cij = ai1b1j + ai2b2j + … + akjb2j.
    Example:

    The product of two matrices is undefined when the 
number of columns in the first matrix is not the same as 
the number of rows in the second.



Illustration of Matrix 
Multiplication 
The Product of A = [aij] and B = [bij] 



Matrix Multiplication is not 
Commutative
   Example: Let

    Does AB = BA?
    Solution:
      

         AB ≠ BA



Identity Matrix and Powers of 
Matrices
   Definition: The identity matrix of order n is 
the m     n matrix In  = [δij], where δij  = 1 if i = 
j and δij  = 0 if i≠j.

                                                              AIn  
= ImA = A 
                                                    when A is an m 
   n  matrix

   Powers of square matrices can be defined. 
When A is an n × n  matrix, we have:
            A0  = In         Ar = AAA∙∙∙A    r times



Transposes of Matrices
   Definition: Let A = [aij] be an m     n 
matrix. The transpose of A, denoted by At ,is 
the n    m matrix obtained by interchanging the 
rows and columns of A.  

If At = [bij], then  bij  = aji for i =1,2,…,n                   
               and j = 1,2, ...,m. 



Transposes of Matrices
   Definition: A square matrix A  is called 
symmetric if  A = At. Thus A = [aij] is 
symmetric if  aij  = aji for i and j with  1≤ i≤ n  
and 1≤ j≤ n. 

    Square  matrices do not change when their 
rows and columns are interchanged.
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