CS 242 Discrete Structures Spring 2014

HW 2 solutions

Section 1.5
10. a) VeF(r Fred) b) VyF(Evelyn, y) ¢) VadyF(r.y) d) —JeVyF(z.y) e) Vy3zF(z,y)

f) —3x(F(z, Fred) A F(z, Jerry))

g) 313y (F(Nancy,yy) A F(Nancy,yz) Ay # y2 AYy(F(Nancy,y) = (y=n Vy=mw)))

h) 3y(VeF(x,y) AVz(VzF(z,2) = z2=1y)) i) ~3zF(z,x)

§) Jadylz £y A Flry) AVz((Flz.z)hz# 2) = 2=y)) (Wedo not assume that this sentence is asserting
that this person can or cannot fool her/himself.)

16. We let P(s,e,m) be the statement that student s has class standing ¢ and is majoring in m. The variable

20.

28

s ranges over students in the class, the variable ¢ ranges over the four class standings, and the variable m
ranges over all possible majors.

a) The proposition is JsdmP(s, junior,m). It is true from the given information.

b) The proposition is ¥s3eP(s, ¢, computer science). This is false, since there are some mathematics majors.
¢) The proposition is 3s3c3m(P(s, ¢, m) A (¢ # junior) A (m # mathematics)). This is true, since there is a
sophomore majoring in computer science.

d) The proposition is ¥s(3eP(s, ¢, computer science) V 3m P(s, sophomore, m)) . This is false, since there is a
freshman mathematics major.

e) The proposition is FmYedsP(s, ¢,m). This is false. It cannot be that m is mathematics, since there is no
senior mathematics major, and it cannot be that m is computer science, since there is no freshman computer
science major. Nor, of course, can m be any other major.

a) Yrvy((xr < 0) A (y < 0) — (xy > 0)) b) Vavy((x > A (y > 0) = ((x+y)/2 > 0))

c¢) What does “necessarily” mean in this context? The best explanation is to assert that a certain universal
conditional statement is not true. So we have -VaVy((xr < 0) A(y < 0) — (z — y < 0)). Note that we do
not want to put the negation symbol inside (it is not true that the difference of two negative integers is never
negative), nor do we want to negate just the conclusion (it is not true that the sum is always nonnegative),
We could rewrite our solution by passing the negation inside, obtaining Jx3y((z < ) A(y < 0)A(z—y = 0)).
d) Ve¥y (le + yl < |2| + |u])

a) true (let y = z2*) b) false (no such y exists if x is negative) c) true (let z =0)

d) false (the commutative law for addition always holds) e) true (let y =1/x)

f) false (the reciprocal of y depends on y—there is not one x that works for all y) g) true (let y =1—1r)
h) false (this svstem of equations is inconsistent)

i) false (this system has only one solution; if x = 0, for example. then no y satisfies y =2A -y = 1)

J) true (let 2 = (x +y)/2)



34. The logical expression is asserting that the domain consists of at most two members, (It is saying that
whenever you have two unequal objects, any object has to be one of those two. Note that this is vacuously
true for domains with one element.) Therefore any domain having one or two members will make it true (such
as the female members of the United States Supreme Court in 2005), and any domain with more than two
members will make it false (such as all members of the United States Supreme Court in 2005).

1.6
6. Let » be the propesition “It rains.” let f be the proposition “It is foggy,” let s be the proposition “The
sailing race will be held,” let | be the proposition “The life saving demonstration will go on,” and let ¢ be the
proposition “The trophy will be awarded.” We are given premises (=rV = f) — (s A (), 8 — 1, and ~t. We
want to conclude r. We set up the proof in two columns, with reasons, as in Example 6. Note that it is valid
to replace subexpressions by other expressions logically equivalent to them.

Step Reason

1. ~t Hypothesis

2, 5=t Hypothesis

3. —s Modus tollens using (1) and (2)

4. (-rv=f)—=(sAl) Hypothesis

3. (s Al)) = ~(~rv~f) Contrapositive of (4)

6. (msVAl)=(rASf) De Morgan's law and double negative
7. ~sv-l Addition, using (3)

8. rAf Modus ponens using (6) and (7)

9 r Stmplification using (8)



10. a) If we use modus tollens starting from the back, then we conclude that T am not sore. Another application
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of modus tollens then tells ns that 1 did not play hockey.

b) We really can't conclude anything specific here.

¢) By universal instantiation, we conclude from the first conditional statement by modus ponens that dragon-
flies have six legs. and we conclude by modus tollens that spiders are not insects. We could say using existential
generalization that, for example, there exists a non-six-legged creature that eats a six-legged creature, and
that there exists a non-insect that eats an insect.

d) We can apply universal instantiation to the conditional statement and conclude that if Homer (respectively,
Maggie) is a student, then he (she) has an Internet account, Now modus tollens tells us that Homer is not a
student. There are no conclusions to be drawn about Maggie.

e) The first conditional statement is that if = is healthy to eat, then z does not taste good. Universal
instantiation and modus ponens therefore tell us that tofu does not taste good. The third sentence says that
if you eat @, then x tastes good. Therefore the fourth hypothesis already follows (by modus tollens) from the
first three. No conclusions can be drawn about cheeseburgers from these statements.

Chapter 1 The Foundations: Logic and Proofs

f) By disjunctive syllogism, the first two hypotheses allow us to conclude that T am hallucinating. Therefore
by modus ponens we know that I see elephants running down the road.



14. In each case we sel up the proof in two columns, with reasons, as in Example 6.

a) Let efx) be *z is in this elass,” let r(z) be “z owns a red convertible.” and let t{x) be “r has gotten

a speeding ticket.” We are given premises efLinda). »(Linda). ¥a(r{x) — t(x)). and we want to conclude

Ax(e(x) A t{x)).

Step
1. ¥x(r(x) — t{x))

b) Let »{z) be

r(Linda) — ¢(Linda)
r(Linda)
t(Linda)
¢ Linda)

5. of Linda) A ¢(Linda)

3a(e(x) At{x))

Reason

Hypothesis

Universal instantiation using (1)
Hypothesis

Modus ponens nsing (2) and (3)
Hypothesis

Conjunction using (4) and (5)
Existential generalization using (6)

“r s one of the live roommates listed,” let d{r) be “x has taken a course in discrete

mathematics,” and let a(x) be “r can take a course in algorithmns.™ We are given premises Va(r(x) - d(z))

and Ya(d(x) — a{x)), and we want to conclude Yr(r(x) — a{x)). In what follows y represents an arbitrary

person.

Step
1. Yx(r(x) — d(rx))

wo1s

o

5.
6.

¢) Let s(z) be *r is a movie produced by Sayles” let e(z) be *x is a movie about coal miners,” and let

ry) — dly)
Va(d(x) — alz])
dy) — aly)
r(y) — aly)
Va(r(xr) — afx))

Reason

Hypothesis

Universal instantiation using (1)
Hypothesis

Universal instantiation using (3)
Hypothetical syllogism using (2} and (4)
Universal generalization nsing {5)

w(x) be “movie » is wonderful.” We are given premises ¥Vr(s(z) — w(x)) and dz(s(z) A e(z)), and we want

to conclude Zx{e(r) A w(x)). In our proof, y represents an unspecified particular movie.

Step

5.

PN

1. 3x(s{x) Aelx))
2. s(y) Aely)

3.

4. Va(s{x) — w(x))

siy)

s(y) = wly)
w(y)

e(y)

w(y) A ely)
Zr(e(z) A w(x))

Reason

Hypothesis

Existential instantiation using (1)
Simplification using (2)
Hypothesis

Universal instantiation using (4)
Modus ponens using (3) and (5)
Shmplification using (2)
Conjunction using (6) and {7)
Existential generalization nsing (8)

d) Let e(z) be “r is in this class.” let f{r) be “x has been to France,” and let /(z) be “r has visited the
Louvre.” We are given premises Jr(e(r) A f{x)), Va(f(x) — {{x)). and we want to conclude Zx(e{z) A l{x)).

Section 1.6 Rules of Inference
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In our proof, y represents an nnspecified particular person.

Step

L. Zx(e(z) A flr))
2. ely) A fy)

3. flw)

4 e(y)

5. Va(f(z) — lx))

S

Sy) — Uy)
Hy)

ey} Al(y)
Zx(e{x) Al(x))

Reason

Hypothesis

Existential instantiation using (1)
Simplification using (2)
Shnplification using (2)
Hypothesis

Universal instantiation using (5)
Modus ponens nsing (3) and (6)
Conjunction using (4) and (7)
Existential generalization using (8)



24. Steps 3 and 5 are incorrect: simplification applies to conjunctions. not digjunctions.

34. Let us use the following letters to stand for the relevant propositions: d for “logic is difficult™; s for “many
students like logic™; and ¢ for “mathematies is easy.” Then the assumptions are d v =s and ¢ — ~d, Note
that the first of these is equivalent to s — d, since both forms are false if and only if s is true and d is false.
In addition. let us note that the second assumption is equivalent to its contrapositive, d — —e. And finally,
by combining these two conditional statements, we see that s — —e also follows from our assumptions.

a) Here we are asked whether we can conelude that s — —e. As we noted above, the answer is ves, this
conclusion is valid.

b) The question concerns —e — =s. This is equivalent to its contrapositive, s — ¢. That doesn’t scem to
follow from our assumptions, so let’s find a case in which the assnmptions hold but this conditional statement
does not. This conditional statement fails in the case in which s is true and e is false, If we take d to be true
as well, then both of our assumptions are true. Therefore this conclusion is not valid.

¢) The issue is —e V d, which is equivalent to the conditional statement ¢ — d. This does net follow from our
assumptions. If we take d to be false. ¢ to be true, and s to be false. then this proposition is false but our
assumptions are true.

d) The issue is ~d vV —e¢, which is equivalent to the conditional statement d — —e. We noted above that this
validly follows from our assumptions.

e) This sentence says —s < (=e vV =d). The only case in which this is false is when s is false and both ¢ and
d are true. But in this case, our assumption e — —d is also violated. Therefore, in all cases in which the

assumptions hold. this statement holds as well, so it s a valid conclusion.

10. A rational number is a number that can be written in the form z/y where & and gy are integers and y # 0,
Suppose that we have two rational numbers, say a/b and ¢/d. Then their product is, by the usual rules for
multiplication of fractions, (ac)/(bd). Note that both the numerator and the denominator are integers, and
that bd # 0 since b and d were both nonzero. Therefore the product is, by definition, a rational number,

12. This is true. Suppose that a/b is a nonzero rational number and that r is an irrational number. We must
prove that the product za/b is also irrational. We give a proof by contradiction. Suppose that ra/b were
rational. Since a/b # (0, we know that a # 0, so b/a is also a rational mumber. Let us multiply this rational
number b/a by the assumed rational number ra/b. By Exercise 26, the product is rational. But the product is
(b/a)(xa/b) = x. which is irrational by hypothesis. This is a contradiction. so in fact ra/h must be irrational.

as desired.

22. We give a proof by contradiction. Suppose that we don’t get a pair of blue socks or a pair of black socks.
Then we drew at most one of cach color. This accounts for only two socks, But we are drawing three socks.
Therefore our supposition that we did not get a pair of blue socks or a pair of black socks is incorrect, and

our proof is complete.

Show by direct proof that $k (where k is positive integer k>1) can be made up using $3 and $2
bills.

Proof: Assume k >1 is an integer. If k is even then there is some positive integer | such that k = 2l and
so $k can be made using | $2 bills. If k is odd then there is some integer m such that

k = 2m+1=2(m-1)+3. In this case $k can be made using m-1 $2 bills and 1 $3 bill. Thus in every case
$k can be made using $2 and $3 bills.



18. Given r. let a be the closest integer to r less than r. and let b be the closest integer to r greater than . In
the notation to be introduced in Section 2.3. a = |r| and b= [r]. In fact, b = a+ 1. Clearly the distance
between r and any integer other than a or b is greater than 1 so cannot be less than 1/2. Furthermore, since
r is irrational. it cannot be exactly half-way between a and b, so exactly oncof r—a < 1/2 and b—r < 1/2

holds.

30. If |y| = 2, then 22° + 5y* > 202 + 20 > 20, so the only possible values of y to try are 0 and +1. In the
former case we would be looking for solutions to 2z* = 14 and in the latter case to 222 = 9. Clearly there
are no integer solitions to these equations, so there are no solutions to the original equation.
nine 1's at some point, But in the step before that each adjacent pair of bits must have been different; in
other words, they must have alternated 0, 1, 0, 1, and so on. This is impossible with an odd number of bits.

This contradiction shows that we can never get nine 0's

Find two positive integers M and N such that M? — N? = 5213 x 4029. (Hint: Use
the fact that M? = N?= (M + N) * (M = N).)

Solution: Using the hint we set M+N=5213 and M-N=4029. Solving this system gives us the solution
M=4621 and N=592.

Give an example of a ten digit number X that can’t be written as X = M? — N2,
(Hint: The number 1000000007 is prime. Argue that 2 x 1000000007 can’t be a
difference of two perfect squares.)

Solution: Prof by contradiction. Assume that 2 x 1000000007 can be written as the difference of
perfect squares. Using the hint as well as the hint from the previous problem we assume that 2 x
1000000007 =M? - N*=(M-N)(M+N). Then M-N and M+N must be even and so there are integers k
and | such that M+N=2k and M-N=2I with k not equal to I. Furthermore 2 x 1000000007/(M+N) is an
integer. However this wold imply

2 x 1000000007/(M+N) = 2 x 1000000007/2k =1000000007/k is an integer and 1000000007 is
dividable by k . A similar argument shows that 1000000007 would also be diviable by I since k and |
are different they cannot both be equal to one which is a contradiction since 1000000007 is odd. Thus 2
x 1000000007 must be a 10 digit number that cannot be written as the difference of squares.

10. a) true b) true c) false—see part (a) d) true
e) true—the one element in the set on the left is an element of the set on the right, and the sets are not equal

f) true—similar to part (e) g) false—the two sets are equal

2.1

24, a) The power set of every set includes at least the empty set, so the power set cannot be empty, Thus ) is
not the power set of any set.
b) This is the power set of {a}.
c) This set has three elements. Since 3 is not a power of 2, this set cannot be the power set of any set.

d) This is the power set of {a,b}.



40.

42.

2.2
18.

The only difference between (A x B) x (C'x D) and Ax (B x () x D is parentheses, so for all practical purposes
one can think of them as essentially the same thing, By Definition 8, the elements of (A x B) x (C' x D)
consist of ordered pairs (x,y), where r € A x B and y € €' x D, so the typical element of (A x B) x (C' x D)
looks like ((a.b),(c.d)). By Definition 9, the elements of A x (B x C) x D consist of 3-tuples (a,x.d). where
ac A, de D, and x € B x C, so the typical element of A x (B x C) x D looks like (a,(b,¢),d). The
structures ((a,b), (¢,d)) and (a. (b, ¢),d) are different, even if they convey exactly the same information (the
first is a pair, and the second is a 3-tuple). To be more precise, there is a natural one-to-one correspondence
between (A x B) x (€' x D) and A x (B x C') x D given by ((a.b). (¢, d)) < (a,(b.c).d).

a) There is a real number whose cube is <1, This is true, since r = ~1 is a solution.

b) There is an integer such that the number obtained by adding 1 to it is greater than the integer. This is
true—in fact, every integer satisfies this statement,

c) For every integer, the number obtained by subtracting 1 is again an integer. This is true.

d) The square of every integer is an integer. This is true.

a) Suppose that @ € AU B. Then either x € A or r € B. In either case, certainly r € AU B U C, This
establishes the desired inclusion.

b) Suppose that w € AN BNC. Then « is in all three of these sets, In particular, it is in both A and B
and therefore in AN B, as desired.

c) Suppose that x € (A~ B) ~C. Then x isin A~ B but not in C. Since x € A~ B, we know that r € A
(we also know that x @ B, but that won't be used here). Since we have established that @ € A but x € (',
we have proved that r € A - C.

d) To show that the set given on the left-hand side is empty. it suffices to assume that r is some element in that
set and derive a contradiction, thereby showing that no such  exists. So suppose that x € (A—-C)N(C— B).
Then x € A —C and x € C — B. The first of these statements implies by definition that = ¢ C, while the
second implies that x € C'. This is impossible, so our proof by contradiction is complete.

e) To establish the equality, we need to prove inclusion in both directions. To prove that (B—A)U(C—-A) C
(BUC) — A, suppose that 2 € (B— A)U(C — A). Then cither x € (B—A) or x € (C - A), Without loss of
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Chapter 2 Basie Structures: Sets, Functions, Sequences, Sumns, and Matrices

generality, assume the former (the proof in the latter case is exactly parallel.) Then x € B and = ¢ A. From
the first of these assertions. it follows that r € BU(C'. Thus we can conclude that r € (BUC) — A, as desired.
For the converse, that is, to show that (BUC) - A C (B — A)U(C — A), suppose that x € (BUC) - A,
This means that r € (BUC) and @ ¢ A, The first of these assertions tells us that either x € B or x € C.
Thus either r € B— A or o € C — A. In either case, x € (B — A)U (C — A). (An alternative proof could be
given by using Venn diagrams, showing that both sides represent the same region. )



30. a) We cannot conclude that A = B. For instance, if A and B are both subsets of €, then this equation will

always hold, and A need not equal B.

b) We cannot conclude that A = B; let € =@, for example.

¢) By putting the two conditions together. we can now conclude that A = B. By symmetry. it suffices to
prove that A € B. Suppose that @ € A. There are two cases. If r € C, then xr € ANC = BN C, which
forces » € B, On the other hand, if 2 € C, then because r € AUC = BUC, we must have x € B.

50. a) As 1 increases. the sets get smaller: -+ € Ay © Ay C A;. All the sets are subsets of A;. which is the set

of positive integers, Z* . It follows that | J5, A; = Z*. Every positive integer is excluded from at least one

(e |
of the sets (in fact from infinitely many), so ()5, A, = 0.
b) All the sets are subsets of the set of natural numbers N (the nonnegative integers), The number 0 is in
each of the sets, and every positive integer is in exactly one of the sets, so |72, A4, = N and (2, 4, = {0}.

c) As i increases, the sets get larger: Ay © Aa € Ag-+-. All the sets are subsets of the set of positive real
numbers R, and every positive real number is included eventually, so [J;2, A; = R*. Because A, is a subset

of each of the others, ﬂ:’__l A, = A; = (0.1) (the interval of all real nunbers between 0 and 1, exclusive).
d) This time, as in part (a), the sets are getting smaller as @ increases: -+« C Ay € Ay C A;. Becanse

Ay includes all the others, [JZ, Ay = (1,00) (all real numbers greater than 1). Every number eventually
gets excluded as i increases, so ﬂ,’;l A, = (). Notice that oo is not a real number, so we cannot write

Mizi A = {0}

52. a) 00 1110 0000 b) 10 1001 G001 c) 01 1100 1110

2.3

10. a) This is one-to-one. b) This is not one-to-one, since b is the image of both a and b.

¢) This is not one-to-one, since d is the image of both a and d.

14. a) This is clearly onto, since f(0, —n) = n for every integer n.
b) This is not onto, since, for example, 2 is not in the range. To see this, if m? — n? = (m —n)(m + n) = 2,
then moand n must have same parity (both even or both odd). In either case, both m — n and m + n are
then even. so this expression is divisible by 4 and hence cannot equal 2.
c) This is clearly onto, since f(0,n — 1) = n for every integer n.
d) This is onto. To achieve negative values we set m = (), and to achieve nonnegative values we set n = 0.
e) This is not onto, for the same reason as in part (b), In fact, the range here is clearly a subset of the range
in that part.

38. Forming the compositions we have (fog)(x) = acr + ad+ b and (go f)(x) = car 4 cb+ d. These are equal if
and only if ad 4+ b = ch+4d. In other words, equality holds for all d-tuples (a,b, e.d) for which ad+ b = ch+d.

42. a) The answer is the set of all solutions to z? = 1. namely {1.-1}.

b) In order for z? to be strictly between 0 and 1, we need x to be either strictly between 0 and 1 or strictly
between —1 and 0. Therefore the answeris {7 | -l <z <0V 0<r<1}.

¢) In order for z? to be greater than 4, we need either » > 2 or + < —2. Therefore the answer is
{rlz>2Vva<-2}.



