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Response Compaction 

 Severe amounts of data in CUT response to LFSR patterns – 
example: 

 Generate 5 million random patterns 

 CUT has 200 outputs 

 Leads to: 5 million x 200 = 1 billion bits response 

 Uneconomical to store and check all of these responses on chip 

 Responses must be compacted 



Definitions 

 Aliasing – Due to information loss, signatures of good and 
some bad machines match 

 Compaction – Drastically reduce # bits in original circuit 
response – lose information 

 Compression – Reduce # bits in original circuit response – no 
information loss – fully invertible (can get back original 
response) 

 Signature analysis – Compact good machine response into 
good machine signature.  Actual signature generated during 
testing, and compared with good machine signature 

 Transition Count Response Compaction – Count # transitions 
from 0        1 and 1        0 as a signature 



Transition Counting 
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Transition Counting Details 

 Transition count: 

   C (R) = S (ri     ri-1)  for all m primary outputs 

 To maximize fault coverage: 

 Make C (R0) – good machine transition count – as 

large or as small as possible 

i = 1 

m 

  



 Obtain a response sequence R for a given order of test vectors 

from a gold CUT or a simulator. 
 Use a compaction function C to produce a vector or a set of 
vectors C(R).  
 The number of bits in C(R) to be far fewer than the number in 
R. 
 Store the compacted vectors on chip or off chip, and, during 
BIST, use the compaction function C to, compact the CUT’s actual 
responses R* to provide C(R* ).  
Finally, to determine the CUT’S status (fault-free or faulty), we 
compare C(R) and C(R *). 
 We declare the CUT fault-free if these two values are identical. 
 

 

Response Compaction 



LFSR for Response Compaction 

 Use cyclic redundancy check code (CRCC) generator (LFSR) 
for response compacter 

 Treat data bits from circuit POs to be compacted as a 
decreasing order coefficient polynomial 

 CRCC divides the PO polynomial by its characteristic 
polynomial 
 Leaves remainder of division in LFSR 

 Must initialize LFSR to seed value (usually 0) before testing 

 After testing – compare signature in LFSR to known good 
machine signature 

 Critical:  Must compute good machine signature 



Example Modular LFSR Response 
Compacter 



Polynomial Division 

 An LFSR modified to accept an external input, acts 
as a polynomial divider. 

 It divides the input sequence, represented by a 
polynomial, by the characteristic polynomial g (x) 
of the LFSR. 

 As this division proceeds bit by bit, the quotient 
sequence appears at the output of the LFSR and 
the remainder appears in the LFSR with every shift 
of the input sequence into the LFSR. 

 

 

 

 



Polynomial Division 

Logic simulation:  Remainder = 1 + x2 + x3 
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Symbolic Polynomial Division 
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Remainder matches that from logic simulation 

of the response compacter! 



Multiple-Input Signature Register 
(MISR) 

 Problem with ordinary LFSR response compacter: 
 Too much hardware if one of these is put on each primary 

output (PO) 

 Solution: MISR – compacts all outputs into one LFSR 
 Works because LFSR is linear – obeys superposition principle 

 Superimpose all responses in one LFSR –      final remainder 
is XOR sum of remainders of polynomial divisions of each PO 
by the characteristic polynomial 



MISR Matrix Equation 

 di (t) – output response on POi at time t 
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Modular MISR Example 
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Built-in Logic Block Observer (BILBO) 

 Combined functionality of D flip-flop, pattern 
generator, response compacter, & scan chain 
 Reset all FFs to 0 by scanning in zeros 



Example BILBO Usage 

 SI – Scan In 

 SO – Scan Out 

 Characteristic polynomial: 1 + x + … + xn 

 CUTs A and C: BILBO1 is MISR, BILBO2 is LFSR 

 CUT B:             BILBO1 is LFSR, BILBO2 is MISR 



BILBO Serial Scan Mode 

 B1 B2 = “00” 

 Dark lines show enabled data paths 



BILBO LFSR Pattern Generator Mode 

 B1 B2 = “01” 



BILBO in D FF (Normal) Mode 

 B1 B2 = “10” 



BILBO in MISR Mode 

 B1 B2 = “11” 



Summary 

 LFSR pattern generator and MISR response compacter – 
preferred BIST methods 

 BIST has overheads: test controller, extra circuit delay, 
Input MUX, pattern generator, response compacter, 
DFT to initialize circuit & test the test hardware 

 BIST benefits: 
 Drastic ATE cost reduction 

 Field test capability 

 Faster diagnosis during system test 

 Less effort to design testing process 

 Shorter test application times 



Quiz VI 

 Consider the following LFSR. What is the 
characteristic polynomial? 

1.     
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