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Response Compaction 

 Severe amounts of data in CUT response to LFSR patterns – 
example: 

 Generate 5 million random patterns 

 CUT has 200 outputs 

 Leads to: 5 million x 200 = 1 billion bits response 

 Uneconomical to store and check all of these responses on chip 

 Responses must be compacted 



Definitions 

 Aliasing – Due to information loss, signatures of good and 
some bad machines match 

 Compaction – Drastically reduce # bits in original circuit 
response – lose information 

 Compression – Reduce # bits in original circuit response – no 
information loss – fully invertible (can get back original 
response) 

 Signature analysis – Compact good machine response into 
good machine signature.  Actual signature generated during 
testing, and compared with good machine signature 

 Transition Count Response Compaction – Count # transitions 
from 0        1 and 1        0 as a signature 



Transition Counting 

Faulty machine 

response is 

shown above the 

good machine 

response 



Transition Counting Details 

 Transition count: 

   C (R) = S (ri     ri-1)  for all m primary outputs 

 To maximize fault coverage: 

 Make C (R0) – good machine transition count – as 

large or as small as possible 

i = 1 

m 

  



 Obtain a response sequence R for a given order of test vectors 

from a gold CUT or a simulator. 
 Use a compaction function C to produce a vector or a set of 
vectors C(R).  
 The number of bits in C(R) to be far fewer than the number in 
R. 
 Store the compacted vectors on chip or off chip, and, during 
BIST, use the compaction function C to, compact the CUT’s actual 
responses R* to provide C(R* ).  
Finally, to determine the CUT’S status (fault-free or faulty), we 
compare C(R) and C(R *). 
 We declare the CUT fault-free if these two values are identical. 
 

 

Response Compaction 



LFSR for Response Compaction 

 Use cyclic redundancy check code (CRCC) generator (LFSR) 
for response compacter 

 Treat data bits from circuit POs to be compacted as a 
decreasing order coefficient polynomial 

 CRCC divides the PO polynomial by its characteristic 
polynomial 
 Leaves remainder of division in LFSR 

 Must initialize LFSR to seed value (usually 0) before testing 

 After testing – compare signature in LFSR to known good 
machine signature 

 Critical:  Must compute good machine signature 



Example Modular LFSR Response 
Compacter 



Polynomial Division 

 An LFSR modified to accept an external input, acts 
as a polynomial divider. 

 It divides the input sequence, represented by a 
polynomial, by the characteristic polynomial g (x) 
of the LFSR. 

 As this division proceeds bit by bit, the quotient 
sequence appears at the output of the LFSR and 
the remainder appears in the LFSR with every shift 
of the input sequence into the LFSR. 

 

 

 

 



Polynomial Division 

Logic simulation:  Remainder = 1 + x2 + x3 
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Symbolic Polynomial Division 
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Remainder matches that from logic simulation 

of the response compacter! 



Multiple-Input Signature Register 
(MISR) 

 Problem with ordinary LFSR response compacter: 
 Too much hardware if one of these is put on each primary 

output (PO) 

 Solution: MISR – compacts all outputs into one LFSR 
 Works because LFSR is linear – obeys superposition principle 

 Superimpose all responses in one LFSR –      final remainder 
is XOR sum of remainders of polynomial divisions of each PO 
by the characteristic polynomial 



MISR Matrix Equation 

 di (t) – output response on POi at time t 
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Modular MISR Example 
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Built-in Logic Block Observer (BILBO) 

 Combined functionality of D flip-flop, pattern 
generator, response compacter, & scan chain 
 Reset all FFs to 0 by scanning in zeros 



Example BILBO Usage 

 SI – Scan In 

 SO – Scan Out 

 Characteristic polynomial: 1 + x + … + xn 

 CUTs A and C: BILBO1 is MISR, BILBO2 is LFSR 

 CUT B:             BILBO1 is LFSR, BILBO2 is MISR 



BILBO Serial Scan Mode 

 B1 B2 = “00” 

 Dark lines show enabled data paths 



BILBO LFSR Pattern Generator Mode 

 B1 B2 = “01” 



BILBO in D FF (Normal) Mode 

 B1 B2 = “10” 



BILBO in MISR Mode 

 B1 B2 = “11” 



Summary 

 LFSR pattern generator and MISR response compacter – 
preferred BIST methods 

 BIST has overheads: test controller, extra circuit delay, 
Input MUX, pattern generator, response compacter, 
DFT to initialize circuit & test the test hardware 

 BIST benefits: 
 Drastic ATE cost reduction 

 Field test capability 

 Faster diagnosis during system test 

 Less effort to design testing process 

 Shorter test application times 



Quiz VI 

 Consider the following LFSR. What is the 
characteristic polynomial? 

1.     
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