
ECE 715
System on Chip Design and Test

Lecture 22

Response Compaction

 Severe amounts of data in CUT response to LFSR patterns –
example:

 Generate 5 million random patterns

 CUT has 200 outputs

 Leads to: 5 million x 200 = 1 billion bits response

 Uneconomical to store and check all of these responses on chip

 Responses must be compacted

Definitions

 Aliasing – Due to information loss, signatures of good and
some bad machines match

 Compaction – Drastically reduce # bits in original circuit
response – lose information

 Compression – Reduce # bits in original circuit response – no
information loss – fully invertible (can get back original
response)

 Signature analysis – Compact good machine response into
good machine signature. Actual signature generated during
testing, and compared with good machine signature

 Transition Count Response Compaction – Count # transitions
from 0 1 and 1 0 as a signature

Transition Counting

Faulty machine

response is

shown above the

good machine

response

Transition Counting Details

 Transition count:

 C (R) = S (ri ri-1) for all m primary outputs

 To maximize fault coverage:

 Make C (R0) – good machine transition count – as

large or as small as possible

i = 1

m

 Obtain a response sequence R for a given order of test vectors

from a gold CUT or a simulator.
 Use a compaction function C to produce a vector or a set of
vectors C(R).
 The number of bits in C(R) to be far fewer than the number in
R.
 Store the compacted vectors on chip or off chip, and, during
BIST, use the compaction function C to, compact the CUT’s actual
responses R* to provide C(R*).
Finally, to determine the CUT’S status (fault-free or faulty), we
compare C(R) and C(R *).
 We declare the CUT fault-free if these two values are identical.

Response Compaction

LFSR for Response Compaction

 Use cyclic redundancy check code (CRCC) generator (LFSR)
for response compacter

 Treat data bits from circuit POs to be compacted as a
decreasing order coefficient polynomial

 CRCC divides the PO polynomial by its characteristic
polynomial
 Leaves remainder of division in LFSR

 Must initialize LFSR to seed value (usually 0) before testing

 After testing – compare signature in LFSR to known good
machine signature

 Critical: Must compute good machine signature

Example Modular LFSR Response
Compacter

Polynomial Division

 An LFSR modified to accept an external input, acts
as a polynomial divider.

 It divides the input sequence, represented by a
polynomial, by the characteristic polynomial g (x)
of the LFSR.

 As this division proceeds bit by bit, the quotient
sequence appears at the output of the LFSR and
the remainder appears in the LFSR with every shift
of the input sequence into the LFSR.

Polynomial Division

Logic simulation: Remainder = 1 + x2 + x3

0 1 0 1 0 0 0 1

0 x0 + 1 x1 + 0 x2 + 1 x3 + 0 x4 + 0 x5 + 0 x6 + 1 x7

Inputs

Initial State

1

0

0

0

1

0

1

0

X
0

0

1

0

0

0

1

1

1

1

X
1

0

0

1

0

0

0

0

1

0

X
2

0

0

0

1

0

0

0

0

1

X
3

0

0

0

0

1

0

1

0

1

X
4

0

0

0

0

0

1

0

1

0

.

Logic
Simulation:

Symbolic Polynomial Division

x
2

x
7

x
7

+ 1

+ x
5

 x
5

 x
5

+ x
3

+ x
3

+ x
3

 x
3

+ x
2

+ x
2

+ x
2

+ x

+ x

+ x + 1

+ 1

x5 + x3 + x + 1

remainder

Remainder matches that from logic simulation

of the response compacter!

Multiple-Input Signature Register
(MISR)

 Problem with ordinary LFSR response compacter:
 Too much hardware if one of these is put on each primary

output (PO)

 Solution: MISR – compacts all outputs into one LFSR
 Works because LFSR is linear – obeys superposition principle

 Superimpose all responses in one LFSR – final remainder
is XOR sum of remainders of polynomial divisions of each PO
by the characteristic polynomial

MISR Matrix Equation

 di (t) – output response on POi at time t

X
0
 (t + 1)

X
1
 (t + 1)

.

.

.

X
n-3

 (t + 1)

X
n-2

 (t + 1)

X
n-1

 (t + 1)

1

0

.

.

.

0

0

h
1

0

0

.

.

.

0

0

1

…

…

…

…

…

0

0

.

.

.

1

0

h
n-2

0

0

.

.

.

0

1

h
n-1

X
0

(t)

X
1

(t)

.

.

.

X
n-3

(t)

X
n-2

(t)

X
n-1

(t)

=

d
0

(t)

d
1

(t)

.

.

.

d
n-3

(t)

d
n-2

(t)

d
n-1

(t)

+

Modular MISR Example

X
0
 (t + 1)

X
1
 (t + 1)

X
2
 (t + 1)

0

0

1

0

1

0

1

1

0

=

X
0

(t)

X
1

(t)

X
2

(t)

d
0

(t)

d
1

(t)

d
2

(t)

+

Built-in Logic Block Observer (BILBO)

 Combined functionality of D flip-flop, pattern
generator, response compacter, & scan chain
 Reset all FFs to 0 by scanning in zeros

Example BILBO Usage

 SI – Scan In

 SO – Scan Out

 Characteristic polynomial: 1 + x + … + xn

 CUTs A and C: BILBO1 is MISR, BILBO2 is LFSR

 CUT B: BILBO1 is LFSR, BILBO2 is MISR

BILBO Serial Scan Mode

 B1 B2 = “00”

 Dark lines show enabled data paths

BILBO LFSR Pattern Generator Mode

 B1 B2 = “01”

BILBO in D FF (Normal) Mode

 B1 B2 = “10”

BILBO in MISR Mode

 B1 B2 = “11”

Summary

 LFSR pattern generator and MISR response compacter –
preferred BIST methods

 BIST has overheads: test controller, extra circuit delay,
Input MUX, pattern generator, response compacter,
DFT to initialize circuit & test the test hardware

 BIST benefits:
 Drastic ATE cost reduction

 Field test capability

 Faster diagnosis during system test

 Less effort to design testing process

 Shorter test application times

Quiz VI

 Consider the following LFSR. What is the
characteristic polynomial?

1.

2.

