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Review:  VHDL 

q Supports design, documentation, simulation & 
verification, and synthesis of hardware 

q Allows integrated design at behavioral and structural 
levels 

q Basic structure 
● Design entity-architecture descriptions 
● Time-based execution (discrete event simulation) model 

Design Entity-Architecture  == 
        Hardware Component 

Entity == External 
          Characteristics 

Architecture (Body )  ==  
           Internal Behavior 
                    or Structure 
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Review:  Entity-Architecture Features 

q Entity defines externally visible characteristics 
● Ports: channels of communication   

-  signal names for inputs, outputs, clocks, control 
● Generic parameters: define class of components 

-  timing characteristics, size (fan-in), fan-out 
q Architecture defines the internal behavior or 

structure of the circuit 
● Declaration of internal signals 
● Description of behavior 

-  collection of Concurrent Signal Assignment (CSA) 
statements (indicated by <=); can also model temporal 
behavior with the delay annotation 

-  one or more processes containing CSAs and (sequential) 
variable assignment statements (indicated by :=) 

● Description of structure 
-  interconnections of components; underlying behavioral 

models of each component must be specified 
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Arithmetic 
q  Where we've been 

●  Abstractions 
-  Instruction Set Architecture (ISA) 
-  Assembly and machine language 

q  What's up ahead 
●  Implementing the architecture (in VHDL) 
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ALU VHDL Representation 

entity ALU is 
  port(A, B:  in std_logic_vector (31 downto 0); 

   m:  in std_logic_vector (3 downto 0); 
   result: out std_logic_vector (31 downto 0); 
   zero: out std_logic; 
   ovf: out std_logic) 

end ALU; 
 
architecture process_behavior of ALU is 
. . . 
begin 

 ALU: process(A, B, m) 
 begin 

       . . . 
     result := A + B; 
     . . . 
 end process ALU; 

end process_behavior; 
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Machine Number Representation 
q Bits are just bits (have no inherent meaning) 

●  conventions define the relationships between bits and 
numbers 

q Binary numbers (base 2) - integers 
0000 -> 0001 -> 0010 -> 0011 -> 0100 -> 0101 -> . . . 
●  in decimal from 0 to 2n-1 for n bits 

q Of course, it gets more complicated 
●  storage locations (e.g., register file words) are finite, so 

have to worry about overflow (i.e., when the number is 
too big to fit into 32 bits) 

●  have to be able to represent negative numbers, e.g., how 
do we specify -8 in 

 addi  $sp, $sp, -8  #$sp = $sp - 8 
●  in real systems have to provide for more than just 

integers, e.g., fractions and real numbers (and floating 
point) and alphanumeric (characters) 
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q  32-bit signed numbers (2’s complement): 
 
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten 
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten 
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten 
... 

 
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten 
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten 
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten 
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten 
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten 
... 

 
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten 
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten 
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten 
 

q  What if the bit string represented addresses? 
●  need operations that also deal with only positive (unsigned) 

integers  

maxint 

minint 

MIPS Representations 
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q  Negating a two's complement number – 
complement all the bits and then add a 1 
●  remember:  “negate” and “invert” are quite different! 

q  Converting n-bit numbers into numbers with more 
than n bits: 
●  MIPS 16-bit immediate gets converted to 32 bits for 

arithmetic 
●  sign extend - copy the most significant bit (the sign bit) 

into the other bits 
  0010  -> 0000 0010 
  1010  -> 1111 1010 

●  sign extension versus zero extend   (lb  vs.  lbu) 

Two's Complement Operations 
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Design the MIPS Arithmetic Logic Unit (ALU) 
q Must support the Arithmetic/Logic                      

operations of the ISA 
add, addi, addiu, addu 
sub, subu 

mult, multu, div, divu 

sqrt 
and, andi, nor, or, ori, xor, xori 

beq, bne, slt, slti, sltiu, sltu 

32 

32 

32 

m (operation) 

result 
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q With special handling for 
●  sign extend – addi, addiu, slti, sltiu 
●  zero extend – andi, ori, xori 
● Overflow detected – add, addi, sub 
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MIPS Arithmetic and Logic Instructions 

R-type: 

I-Type: 

31 25 20 15 5 0 

op Rs Rt Rd funct 

op Rs Rt Immed 16 

Type      op  funct 

ADDI  001000  xx 

ADDIU  001001  xx 

SLTI  001010  xx 

SLTIU  001011  xx 

ANDI  001100  xx 

ORI  001101  xx 

XORI  001110  xx 

LUI  001111  xx 

Type      op    funct 

ADD  000000  100000 

ADDU 000000  100001 

SUB  000000  100010 

SUBU 000000  100011 

AND  000000  100100 

OR  000000  100101 

XOR  000000  100110 

NOR  000000  100111 

Type     op  funct 

 000000  101000 

 000000  101001 

SLT  000000  101010 

SLTU 000000  101011 

 000000  101100 
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Design Trick: Divide & Conquer 
q Break the problem into simpler problems, solve 

them and glue together the solution 
q Example: assume the immediates have been 

taken care of before the ALU 
●  now down to 10 operations 
●  can encode in 4 bits 

 0  add 

 1  addu 

 2  sub 

 3  subu 

 4  and 

 5  or 

 6  xor 

 7  nor 

 a  slt 

 b  sltu 
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q  Just like in grade school  (carry/borrow 1s) 
   0111     0111       0110 
 + 0110   - 0110   - 0101 

            
q  Two's complement operations are easy 

●  do subtraction by negating and then adding 
    0111   ->      0111                                   
- 0110   ->    + 1010   
 

q  Overflow  (result too large for finite computer word) 
●  e.g.,  adding two n-bit numbers does not yield an n-bit number 
   0111   
 + 0001    
      

Addition & Subtraction 

1101              0001              0001
   


     0001         1 0001  
   


  1000 
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Building a 1-bit Binary Adder 

1 bit 
Full 
Adder 

A 

B 
S 

carry_in 

carry_out 

     S = A  xor  B  xor  carry_in 
     carry_out  = A&B  |  A&carry_in  |  B&carry_in 
                         (majority function) 

q How can we use it to build a 32-bit adder? 

q How can we modify it easily to build an adder/subtractor? 

A B carry_in carry_out S 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 
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Building 32-bit Adder 

1-bit 
FA 

A0 

B0 
S0 

c0=carry_in 

c1 

1-bit 
FA 

A1 

B1 
S1 

c2 

1-bit 
FA 

A2 

B2 
S2 

c3 

c32=carry_out 

1-bit 
FA 

A31 

B31 
S31 

c31 

. .
 . 

q  Just connect the carry-out of 
the least significant bit FA to the 
carry-in of the next least 
significant bit and connect . . . 

q Ripple Carry Adder (RCA) 
l  advantage:  simple logic, so small  

(low cost) 

l  disadvantage:  slow and lots of 
glitching (so lots of energy 
consumption) 



CEG3420  L03.15 Qiang Xu  CUHK, Spring 2014 

A 32-bit Ripple Carry Adder/Subtractor 

q Remember 2’s 
complement is just 

l  complement all the bits 

l  add a 1 in the least 
significant bit 




 
A   0111  ->   0111                                   
B - 0110  -> +   

1-bit 
FA S0 

c0=carry_in 

c1 

1-bit 
FA S1 

c2 

1-bit 
FA S2 

c3 

c32=carry_out 

1-bit 
FA S31 

c31 

. .
 . 

A0 

A1 

A2 

A31 

B0 

B1 

B2 

B31 

add/sub 

B0 

control 
(0=add,1=sub) B0 if control = 0 

!B0 if control = 1 

0001 

1001 
   1 

1 0001 
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Overflow Detection and Effects 
q Overflow:  the result is too large to represent in the 

number of bits allocated 
q When adding operands with different signs, overflow 

cannot occur!  Overflow occurs when 
●  adding two positives yields a negative  
●  or, adding two negatives gives a positive 
●  or, subtract a negative from a positive gives a negative 
●  or, subtract a positive from a negative gives a positive 

q On overflow, an exception (interrupt) occurs 
● Control jumps to predefined address for exception 
●  Interrupted address (address of instruction causing the 

overflow) is saved for possible resumption 
q Don't always want to detect (interrupt on) overflow 
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New MIPS Instructions 
Category Instr Op Code Example Meaning 

Arithmetic 
(R & I 
format) 

add unsigned 0 and 21 addu  $s1, $s2, $s3 $s1 = $s2 + $s3 
sub unsigned 0 and 23 subu  $s1, $s2, $s3 $s1 = $s2 - $s3 
add 
imm.unsigned 

9 addiu $s1, $s2, 6 $s1 = $s2 + 6 

Data 
Transfer 

ld byte 
unsigned 

24 lbu     $s1, 20($s2) $s1 = Mem($s2+20) 

ld half unsigned 25 lhu     $s1, 20($s2) $s1 = Mem($s2+20) 
Cond. 
Branch    
(I & R 
format) 

set on less than 
unsigned 

0 and 2b  sltu    $s1, $s2, $s3 if ($s2<$s3) $s1=1 
else                       $s1=0 

set on less than 
imm unsigned 

b sltiu   $s1, $s2, 6 if ($s2<6) $s1=1 
else                     $s1=0 

q Sign extend – addi, addiu, slti, sltiu 
q Zero extend – andi, ori, xori 
q Overflow detected – add, addi, sub 
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Minimal Implementation of a Full Adder 

architecture concurrent_behavior of full_adder is 
   signal t1, t2, t3, t4, t5: std_logic; 

begin 

     t1 <= not A after 1 ns; 

     t2 <= not cin after 1 ns; 

     t4 <= not((A or cin) and B) after 2 ns; 

     t3 <= not((t1 or t2) and (A or cin)) after 2 ns; 

     t5 <= t3 nand B after 2 ns; 

     S <= not((B or t3) and t5) after 2 ns; 

     cout <= not(t1 or t2) and t4) after 2 ns; 

end concurrent_behavior; 

q  Can you create the equivalent schematic?  Can you 
determine worst case delay (the worst case timing path 
through the circuit)? 

q  Gate library: inverters, 2-input nands, or-and-inverters 
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q  Also need to support the logic operations 
(and,nor,or,xor) 
●  Bit wise operations (no carry operation involved) 
●  Need a logic gate for each function and a mux to choose 

the output 
q  Also need to support the set-on-less-than 

instruction (slt) 
●  Uses subtraction to determine if (a – b) < 0 (implies a < b) 

q  Also need to support test for equality (bne, beq) 
●  Again use subtraction:  (a - b) = 0 implies a = b 

q  Also need to add overflow detection hardware 
●  overflow detection enabled only for   add, addi, sub 

q  Immediates are sign extended outside the ALU with 
wiring (i.e., no logic needed) 

Tailoring the ALU to the MIPS ISA 



CEG3420  L03.20 Qiang Xu  CUHK, Spring 2014 

A Simple ALU Cell with Logic Op Support 

1-bit 
FA 

carry_in 

carry_out 

A 

B 

add/subt 

add/subt 

result 

op 
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Modifying the ALU Cell for slt 

1-bit 
FA 

A 

B 

result 

carry_in 

carry_out 

add/subt op 

add/subt 

less 

0 

1 

2 

3 

6 

7 
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Modifying the ALU for slt 

q First perform a 
subtraction 

q Make the result 1 if 
the subtraction yields 
a negative result 

q Make the result 0 if 
the subtraction yields 
a positive result 

l  tie the most 
significant sum bit 
(sign bit) to the low 
order less input 

A1 

B1 

A0 

B0 

A31 

B31 

+ 

result1 

less 

+ 

result0 

less 

+ 

result31 

less 

.   .   . 
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Modifying the ALU for Zero 

+ 

A1 

B1 

result1 

less 

+ 

A0 

B0 

result0 

less 

+ 

A31 

B31 

result31 

less 

.   .   . 
0 

0 

set 

q  First perform 
subtraction 

q  Insert additional logic 
to detect when all result 
bits are zero 

add/subt 
op 

l Note zero is a 1 
when result is all 
zeros 
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Overflow Detection 
q Overflow occurs when  the result is too large to 

represent in the number of bits allocated 
●  adding two positives yields a negative  
●  or, adding two negatives gives a positive 
●  or, subtract a negative from a positive gives a negative 
●  or, subtract a positive from a negative gives a positive 

q On your own: Prove you can detect overflow by: 
● Carry into MSB xor Carry out of MSB 

1 

1 

1 1 0 

1 

0 

1 

1 

0 

0 1 1 1 

0 0 1 1 + 

7 

3 

0 

1 

– 6 

1 1 0 0 

1 0 1 1 + 

–4 

– 5 

7 1 

0 
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Modifying the ALU for Overflow 

+ 

A1 

B1 

result1 

less 

+ 

A0 

B0 

result0 

less 

+ 

A31 

B31 

result31 

less 

.   .   . 
0 

0 

set 

q  Modify the most 
significant cell to 
determine overflow 
output setting 

q  Enable overflow bit 
setting for signed 
arithmetic (add, addi, 
sub)  

zero 

. . . 

add/subt 
op 

overflow 
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But What about Performance? 
q Critical path of n-bit ripple-carry adder is n*CP 

q Design trick – throw hardware at it (Carry 
Lookahead) 

A0 

B0 
1-bit 
ALU 

Result0 

CarryIn0 

CarryOut0 

A1 

B1 
1-bit 
ALU 

Result1 

CarryIn1 

CarryOut1 

A2 

B2 
1-bit 
ALU 

Result2 

CarryIn2 

CarryOut2 

A3 

B3 
1-bit 
ALU 

Result3 

CarryIn3 

CarryOut3 
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q  More complicated than addition 
● Can be accomplished via shifting and adding 
 
      0010     (multiplicand) 
    x_1011     (multiplier) 
         0010                                               
     0010   (partial product                          
    0000     array)                         
       0010                              
      00010110   (product) 

q  Double precision product produced 
q  More time and more area to compute 

Multiplication 
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Add and Right Shift Multiplier Hardware 

multiplicand 

32-bit ALU 

                    multiplier  Control 

add 
shift 
right 

product 
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Add and Right Shift Multiplier Hardware 

multiplicand 

32-bit ALU 

                    multiplier  Control 

add 
shift 
right 

product 

0 1 1 0       = 6 

0 0 0 0         0 1 0 1       = 5 
add  0 1 1 0         0 1 0 1 

0 0 1 1         0 0 1 0 
add  0 0 1 1         0 0 1 0 

0 0 0 1         1 0 0 1  
add  0 1 1 1         1 0 0 1 

0 0 0 1         1 1 1 0 
add  0 0 1 1         1 1 0 0 

0 0 1 1         1 1 0 0 

= 30 
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q  Multiply (mult and multu) produces a double 
precision product 

 mult   $s0, $s1    # hi||lo = $s0 * $s1 
 

 
●  Low-order word of the product is left in processor register  
lo and the high-order word is left in register hi 

●  Instructions mfhi rd and mflo rd are provided to 
move the product to (user accessible) registers in the 
register file 

MIPS Multiply Instruction 

0              16           17           0            0            0x18 

q  Multiplies are usually done by fast, dedicated 
hardware and are much more complex (and slower) 
than adders 
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Division 
q Division is just a bunch of quotient digit guesses 

and left shifts and subtracts 

dividend 

divisor 

partial 
remainder 
array 

quotient n 
n 

remainder 

n 

0 0 0

0

0

0
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q  Divide generates the reminder in hi and the 
quotient in lo 

 div  $s0, $s1    # lo = $s0 / $s1 
       # hi = $s0 mod $s1 

 
 

●  Instructions mflo rd and mfhi rd are provided to 
move the quotient and reminder to (user accessible) 
registers in the register file 

MIPS Divide Instruction 

q  As with multiply, divide ignores overflow so 
software must determine if the quotient is too 
large.  Software must also check the divisor to 
avoid division by 0. 

op           rs            rt            rd        shamt       funct 
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Shift Operations 
q Shifts move all the bits in a word left or right 
    sll  $t2, $s0, 8 #$t2 = $s0 << 8 bits 
  srl  $t2, $s0, 8 #$t2 = $s0 >> 8 bits 
  sra  $t2, $s0, 8 #$t2 = $s0 >> 8 bits 

op           rs            rt            rd        shamt       funct 

q Notice that a 5-bit shamt field is enough to shift a 
32-bit value 25 – 1 or 31 bit positions 

q Logical shifts fill with zeros, arithmetic left shifts fill 
with the sign bit 

q The shift operation is implemented by hardware 
separate from the ALU 
●  using a barrel shifter (which would takes lots of gates in 

discrete logic, but is pretty easy to implement in VLSI) 



CEG3420  L03.34 Qiang Xu  CUHK, Spring 2014 

Parallel Programmable Shifters 

D
at

a 
In

 

Control 

D
at

a 
O

ut 

Shift amount (Sh4Sh3Sh2Sh1Sh0) 
Shift direction (left, right) 
Shift type (logical, arithmetic) 

= 
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Wrap-Up 
q  We can build an ALU to support the MIPS ISA 

●  we can efficiently perform subtraction using two’s 
complement 

●  we can replicate a 1-bit ALU to produce a 32-bit ALU 
q  Important points about hardware 

●  all of the gates are always working (concurrent) 
●  the speed of a gate is affected by the number of inputs to 

the gate (fan-in) and the number of gates that the output 
is connected to (fan-out) 

●  the speed of a circuit is affected by the speed of and 
number of gates in series (on the “critical path” or the 
“number of levels of logic”) and the length of wires 
interconnecting the gates 

q  Our primary focus is comprehension, however, 
●  clever changes to organization can improve performance 

(similar to using better algorithms in software) 
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Next Lecture and Reminders 
q Next lecture (possibly next Monday 6:30-9:15pm) 

●  Floating-point instructions 
●  MIPS single-cycle implementation 

q Reminders 
●  Group registration soon 


