
CEG3420 L03.1 Qiang Xu CUHK, Spring 2014

CENG/CSCI 3420
Computer Organization and Design

Spring 2014

 Lecture 03: Arithmetic for Computers

XU, Qiang 徐強

[Adapted from UC Berkeley’s D. Patterson’s and
from PSU’s Mary J. Irwin’s slides with additional credits to Y. Xie]

CEG3420 L03.2 Qiang Xu CUHK, Spring 2014

Review: VHDL

q Supports design, documentation, simulation &
verification, and synthesis of hardware

q Allows integrated design at behavioral and structural
levels

q Basic structure
● Design entity-architecture descriptions
● Time-based execution (discrete event simulation) model

Design Entity-Architecture ==
 Hardware Component

Entity == External
 Characteristics

Architecture (Body) ==
 Internal Behavior
 or Structure

CEG3420 L03.3 Qiang Xu CUHK, Spring 2014

Review: Entity-Architecture Features

q Entity defines externally visible characteristics
● Ports: channels of communication

-  signal names for inputs, outputs, clocks, control
● Generic parameters: define class of components

-  timing characteristics, size (fan-in), fan-out
q Architecture defines the internal behavior or

structure of the circuit
● Declaration of internal signals
● Description of behavior

-  collection of Concurrent Signal Assignment (CSA)
statements (indicated by <=); can also model temporal
behavior with the delay annotation

-  one or more processes containing CSAs and (sequential)
variable assignment statements (indicated by :=)

● Description of structure
-  interconnections of components; underlying behavioral

models of each component must be specified

CEG3420 L03.4 Qiang Xu CUHK, Spring 2014

Arithmetic
q  Where we've been

●  Abstractions
-  Instruction Set Architecture (ISA)
-  Assembly and machine language

q  What's up ahead
●  Implementing the architecture (in VHDL)

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

CEG3420 L03.5 Qiang Xu CUHK, Spring 2014

ALU VHDL Representation

entity ALU is
 port(A, B: in std_logic_vector (31 downto 0);

 m: in std_logic_vector (3 downto 0);
 result: out std_logic_vector (31 downto 0);
 zero: out std_logic;
 ovf: out std_logic)

end ALU;

architecture process_behavior of ALU is
. . .
begin

 ALU: process(A, B, m)
 begin

 . . .
 result := A + B;
 . . .
 end process ALU;

end process_behavior;

CEG3420 L03.6 Qiang Xu CUHK, Spring 2014

Machine Number Representation
q Bits are just bits (have no inherent meaning)

●  conventions define the relationships between bits and
numbers

q Binary numbers (base 2) - integers
0000 -> 0001 -> 0010 -> 0011 -> 0100 -> 0101 -> . . .
●  in decimal from 0 to 2n-1 for n bits

q Of course, it gets more complicated
●  storage locations (e.g., register file words) are finite, so

have to worry about overflow (i.e., when the number is
too big to fit into 32 bits)

●  have to be able to represent negative numbers, e.g., how
do we specify -8 in

 addi $sp, $sp, -8 #$sp = $sp - 8
●  in real systems have to provide for more than just

integers, e.g., fractions and real numbers (and floating
point) and alphanumeric (characters)

CEG3420 L03.7 Qiang Xu CUHK, Spring 2014

q  32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...

1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

q  What if the bit string represented addresses?
●  need operations that also deal with only positive (unsigned)

integers

maxint

minint

MIPS Representations

CEG3420 L03.8 Qiang Xu CUHK, Spring 2014

q  Negating a two's complement number –
complement all the bits and then add a 1
●  remember: “negate” and “invert” are quite different!

q  Converting n-bit numbers into numbers with more
than n bits:
●  MIPS 16-bit immediate gets converted to 32 bits for

arithmetic
●  sign extend - copy the most significant bit (the sign bit)

into the other bits
 0010 -> 0000 0010
 1010 -> 1111 1010

●  sign extension versus zero extend (lb vs. lbu)

Two's Complement Operations

CEG3420 L03.9 Qiang Xu CUHK, Spring 2014

Design the MIPS Arithmetic Logic Unit (ALU)
q Must support the Arithmetic/Logic

operations of the ISA
add, addi, addiu, addu
sub, subu

mult, multu, div, divu

sqrt
and, andi, nor, or, ori, xor, xori

beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

q With special handling for
●  sign extend – addi, addiu, slti, sltiu
●  zero extend – andi, ori, xori
● Overflow detected – add, addi, sub

CEG3420 L03.10 Qiang Xu CUHK, Spring 2014

MIPS Arithmetic and Logic Instructions

R-type:

I-Type:

31 25 20 15 5 0

op Rs Rt Rd funct

op Rs Rt Immed 16

Type op funct

ADDI 001000 xx

ADDIU 001001 xx

SLTI 001010 xx

SLTIU 001011 xx

ANDI 001100 xx

ORI 001101 xx

XORI 001110 xx

LUI 001111 xx

Type op funct

ADD 000000 100000

ADDU 000000 100001

SUB 000000 100010

SUBU 000000 100011

AND 000000 100100

OR 000000 100101

XOR 000000 100110

NOR 000000 100111

Type op funct

 000000 101000

 000000 101001

SLT 000000 101010

SLTU 000000 101011

 000000 101100

CEG3420 L03.11 Qiang Xu CUHK, Spring 2014

Design Trick: Divide & Conquer
q Break the problem into simpler problems, solve

them and glue together the solution
q Example: assume the immediates have been

taken care of before the ALU
●  now down to 10 operations
●  can encode in 4 bits

 0 add

 1 addu

 2 sub

 3 subu

 4 and

 5 or

 6 xor

 7 nor

 a slt

 b sltu

CEG3420 L03.12 Qiang Xu CUHK, Spring 2014

q  Just like in grade school (carry/borrow 1s)
 0111 0111 0110
 + 0110 - 0110 - 0101

q  Two's complement operations are easy

●  do subtraction by negating and then adding
 0111 -> 0111
- 0110 -> + 1010

q  Overflow (result too large for finite computer word)
●  e.g., adding two n-bit numbers does not yield an n-bit number
 0111
 + 0001

Addition & Subtraction

1101 0001 0001

 0001 1 0001

 1000

CEG3420 L03.13 Qiang Xu CUHK, Spring 2014

Building a 1-bit Binary Adder

1 bit
Full
Adder

A

B
S

carry_in

carry_out

 S = A xor B xor carry_in
 carry_out = A&B | A&carry_in | B&carry_in
 (majority function)

q How can we use it to build a 32-bit adder?

q How can we modify it easily to build an adder/subtractor?

A B carry_in carry_out S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

CEG3420 L03.14 Qiang Xu CUHK, Spring 2014

Building 32-bit Adder

1-bit
FA

A0

B0
S0

c0=carry_in

c1

1-bit
FA

A1

B1
S1

c2

1-bit
FA

A2

B2
S2

c3

c32=carry_out

1-bit
FA

A31

B31
S31

c31

. .
 .

q  Just connect the carry-out of
the least significant bit FA to the
carry-in of the next least
significant bit and connect . . .

q Ripple Carry Adder (RCA)
l  advantage: simple logic, so small

(low cost)

l  disadvantage: slow and lots of
glitching (so lots of energy
consumption)

CEG3420 L03.15 Qiang Xu CUHK, Spring 2014

A 32-bit Ripple Carry Adder/Subtractor

q Remember 2’s
complement is just

l  complement all the bits

l  add a 1 in the least
significant bit

A 0111 -> 0111
B - 0110 -> +

1-bit
FA S0

c0=carry_in

c1

1-bit
FA S1

c2

1-bit
FA S2

c3

c32=carry_out

1-bit
FA S31

c31

. .
 .

A0

A1

A2

A31

B0

B1

B2

B31

add/sub

B0

control
(0=add,1=sub) B0 if control = 0

!B0 if control = 1

0001

1001
 1

1 0001

CEG3420 L03.16 Qiang Xu CUHK, Spring 2014

Overflow Detection and Effects
q Overflow: the result is too large to represent in the

number of bits allocated
q When adding operands with different signs, overflow

cannot occur! Overflow occurs when
●  adding two positives yields a negative
●  or, adding two negatives gives a positive
●  or, subtract a negative from a positive gives a negative
●  or, subtract a positive from a negative gives a positive

q On overflow, an exception (interrupt) occurs
● Control jumps to predefined address for exception
●  Interrupted address (address of instruction causing the

overflow) is saved for possible resumption
q Don't always want to detect (interrupt on) overflow

CEG3420 L03.17 Qiang Xu CUHK, Spring 2014

New MIPS Instructions
Category Instr Op Code Example Meaning

Arithmetic
(R & I
format)

add unsigned 0 and 21 addu $s1, $s2, $s3 $s1 = $s2 + $s3
sub unsigned 0 and 23 subu $s1, $s2, $s3 $s1 = $s2 - $s3
add
imm.unsigned

9 addiu $s1, $s2, 6 $s1 = $s2 + 6

Data
Transfer

ld byte
unsigned

24 lbu $s1, 20($s2) $s1 = Mem($s2+20)

ld half unsigned 25 lhu $s1, 20($s2) $s1 = Mem($s2+20)
Cond.
Branch
(I & R
format)

set on less than
unsigned

0 and 2b sltu $s1, $s2, $s3 if ($s2<$s3) $s1=1
else $s1=0

set on less than
imm unsigned

b sltiu $s1, $s2, 6 if ($s2<6) $s1=1
else $s1=0

q Sign extend – addi, addiu, slti, sltiu
q Zero extend – andi, ori, xori
q Overflow detected – add, addi, sub

CEG3420 L03.18 Qiang Xu CUHK, Spring 2014

Minimal Implementation of a Full Adder

architecture concurrent_behavior of full_adder is
 signal t1, t2, t3, t4, t5: std_logic;

begin

 t1 <= not A after 1 ns;

 t2 <= not cin after 1 ns;

 t4 <= not((A or cin) and B) after 2 ns;

 t3 <= not((t1 or t2) and (A or cin)) after 2 ns;

 t5 <= t3 nand B after 2 ns;

 S <= not((B or t3) and t5) after 2 ns;

 cout <= not(t1 or t2) and t4) after 2 ns;

end concurrent_behavior;

q  Can you create the equivalent schematic? Can you
determine worst case delay (the worst case timing path
through the circuit)?

q  Gate library: inverters, 2-input nands, or-and-inverters

CEG3420 L03.19 Qiang Xu CUHK, Spring 2014

q  Also need to support the logic operations
(and,nor,or,xor)
●  Bit wise operations (no carry operation involved)
●  Need a logic gate for each function and a mux to choose

the output
q  Also need to support the set-on-less-than

instruction (slt)
●  Uses subtraction to determine if (a – b) < 0 (implies a < b)

q  Also need to support test for equality (bne, beq)
●  Again use subtraction: (a - b) = 0 implies a = b

q  Also need to add overflow detection hardware
●  overflow detection enabled only for add, addi, sub

q  Immediates are sign extended outside the ALU with
wiring (i.e., no logic needed)

Tailoring the ALU to the MIPS ISA

CEG3420 L03.20 Qiang Xu CUHK, Spring 2014

A Simple ALU Cell with Logic Op Support

1-bit
FA

carry_in

carry_out

A

B

add/subt

add/subt

result

op

CEG3420 L03.21 Qiang Xu CUHK, Spring 2014

Modifying the ALU Cell for slt

1-bit
FA

A

B

result

carry_in

carry_out

add/subt op

add/subt

less

0

1

2

3

6

7

CEG3420 L03.22 Qiang Xu CUHK, Spring 2014

Modifying the ALU for slt

q First perform a
subtraction

q Make the result 1 if
the subtraction yields
a negative result

q Make the result 0 if
the subtraction yields
a positive result

l  tie the most
significant sum bit
(sign bit) to the low
order less input

A1

B1

A0

B0

A31

B31

+

result1

less

+

result0

less

+

result31

less

. . .

CEG3420 L03.23 Qiang Xu CUHK, Spring 2014

Modifying the ALU for Zero

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31

result31

less

. . .
0

0

set

q  First perform
subtraction

q  Insert additional logic
to detect when all result
bits are zero

add/subt
op

l Note zero is a 1
when result is all
zeros

CEG3420 L03.24 Qiang Xu CUHK, Spring 2014

Overflow Detection
q Overflow occurs when the result is too large to

represent in the number of bits allocated
●  adding two positives yields a negative
●  or, adding two negatives gives a positive
●  or, subtract a negative from a positive gives a negative
●  or, subtract a positive from a negative gives a positive

q On your own: Prove you can detect overflow by:
● Carry into MSB xor Carry out of MSB

1

1

1 1 0

1

0

1

1

0

0 1 1 1

0 0 1 1 +

7

3

0

1

– 6

1 1 0 0

1 0 1 1 +

–4

– 5

7 1

0

CEG3420 L03.25 Qiang Xu CUHK, Spring 2014

Modifying the ALU for Overflow

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31

result31

less

. . .
0

0

set

q  Modify the most
significant cell to
determine overflow
output setting

q  Enable overflow bit
setting for signed
arithmetic (add, addi,
sub)

zero

. . .

add/subt
op

overflow

CEG3420 L03.26 Qiang Xu CUHK, Spring 2014

But What about Performance?
q Critical path of n-bit ripple-carry adder is n*CP

q Design trick – throw hardware at it (Carry
Lookahead)

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0

A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1

A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

CEG3420 L03.27 Qiang Xu CUHK, Spring 2014

q  More complicated than addition
● Can be accomplished via shifting and adding

 0010 (multiplicand)
 x_1011 (multiplier)
 0010
 0010 (partial product
 0000 array)
 0010
 00010110 (product)

q  Double precision product produced
q  More time and more area to compute

Multiplication

CEG3420 L03.28 Qiang Xu CUHK, Spring 2014

Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

 multiplier Control

add
shift
right

product

CEG3420 L03.29 Qiang Xu CUHK, Spring 2014

Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

 multiplier Control

add
shift
right

product

0 1 1 0 = 6

0 0 0 0 0 1 0 1 = 5
add 0 1 1 0 0 1 0 1

0 0 1 1 0 0 1 0
add 0 0 1 1 0 0 1 0

0 0 0 1 1 0 0 1
add 0 1 1 1 1 0 0 1

0 0 0 1 1 1 1 0
add 0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

= 30

CEG3420 L03.30 Qiang Xu CUHK, Spring 2014

q  Multiply (mult and multu) produces a double
precision product

 mult $s0, $s1 # hi||lo = $s0 * $s1

●  Low-order word of the product is left in processor register
lo and the high-order word is left in register hi

●  Instructions mfhi rd and mflo rd are provided to
move the product to (user accessible) registers in the
register file

MIPS Multiply Instruction

0 16 17 0 0 0x18

q  Multiplies are usually done by fast, dedicated
hardware and are much more complex (and slower)
than adders

CEG3420 L03.31 Qiang Xu CUHK, Spring 2014

Division
q Division is just a bunch of quotient digit guesses

and left shifts and subtracts

dividend

divisor

partial
remainder
array

quotient n
n

remainder

n

0 0 0

0

0

0

CEG3420 L03.32 Qiang Xu CUHK, Spring 2014

q  Divide generates the reminder in hi and the
quotient in lo

 div $s0, $s1 # lo = $s0 / $s1
 # hi = $s0 mod $s1

●  Instructions mflo rd and mfhi rd are provided to
move the quotient and reminder to (user accessible)
registers in the register file

MIPS Divide Instruction

q  As with multiply, divide ignores overflow so
software must determine if the quotient is too
large. Software must also check the divisor to
avoid division by 0.

op rs rt rd shamt funct

CEG3420 L03.33 Qiang Xu CUHK, Spring 2014

Shift Operations
q Shifts move all the bits in a word left or right
 sll $t2, $s0, 8 #$t2 = $s0 << 8 bits
 srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits
 sra $t2, $s0, 8 #$t2 = $s0 >> 8 bits

op rs rt rd shamt funct

q Notice that a 5-bit shamt field is enough to shift a
32-bit value 25 – 1 or 31 bit positions

q Logical shifts fill with zeros, arithmetic left shifts fill
with the sign bit

q The shift operation is implemented by hardware
separate from the ALU
●  using a barrel shifter (which would takes lots of gates in

discrete logic, but is pretty easy to implement in VLSI)

CEG3420 L03.34 Qiang Xu CUHK, Spring 2014

Parallel Programmable Shifters

D
at

a
In

Control

D
at

a
O

ut

Shift amount (Sh4Sh3Sh2Sh1Sh0)
Shift direction (left, right)
Shift type (logical, arithmetic)

=

CEG3420 L03.35 Qiang Xu CUHK, Spring 2014

Wrap-Up
q  We can build an ALU to support the MIPS ISA

●  we can efficiently perform subtraction using two’s
complement

●  we can replicate a 1-bit ALU to produce a 32-bit ALU
q  Important points about hardware

●  all of the gates are always working (concurrent)
●  the speed of a gate is affected by the number of inputs to

the gate (fan-in) and the number of gates that the output
is connected to (fan-out)

●  the speed of a circuit is affected by the speed of and
number of gates in series (on the “critical path” or the
“number of levels of logic”) and the length of wires
interconnecting the gates

q  Our primary focus is comprehension, however,
●  clever changes to organization can improve performance

(similar to using better algorithms in software)

CEG3420 L03.36 Qiang Xu CUHK, Spring 2014

Next Lecture and Reminders
q Next lecture (possibly next Monday 6:30-9:15pm)

●  Floating-point instructions
●  MIPS single-cycle implementation

q Reminders
●  Group registration soon

