Physics 236 B (Winter 2013-14): General Relativity, Week 2, Lecture 2

Extractung Signal from Noise



Extracting Signal from Noise

Signals with known shapes can be better extracted from noisy data.

x(t) = s(t) +n(t)
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signal “submerged” in noise: signal amplitude less than noise level
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Extracting Signal from Noise
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the data looks no different from pure noise



Extracting Signal from Noise
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In the frequency domain, signal shows up clearly!
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Random Processes

Noise is described by a random process n(t): a series of random variables labeled by ¢
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A (continuous) random process is fully described by joint probability distributions

pi(t, y1), p2(f1, Y15 t2,¥2), - - -, pn(t1, y15 82, Y25 - - - s ENYN)

It can be characterized by correlation functions

(n(t)) = [ yipa(ta, )y

(n(t)n(t2)) = / y1y2p2(t1, y1; ta, y2 )dyrdy»



Random Processes

Stationary random process: distribution the same when shifted in time.

vl ynty . =plh —o it Tt )
In particular, (n(t1)) = (n(tz2)) (n(t1)n(t2)) = (n(0)n(tr —t1))

Gaussian Random Process
1. Joint distributions are Gaussians determined by one- and two-point correlations.

Z ajly; — (n(£))] lye — (1 (tk)>]]

kil

pN = Aexp | —
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ik = (nltp)n(tx)) — (n(t;)) (n(t))

2. Linear combinations of 7 at different times are Gaussian random variables.
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Spectral Density

Consider stationary Gaussian random variable, with zero mean.
Stationary: different Fourier components are statistically independent.
= 5200 :
X(Q) = / X ()€t dt
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Spectral density characterizes
the amount of noise power per unit frequency band.

Cross Spectral Density: (X(Q)Y*(QY)) = 2m5(Q — Q) Sxy(Q)
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(Coherence ttme, Bandwidth, etc.

G (2) S:(f) Typically, C(t) drops to
bandwidth O for large t and S
e Af drops for large f
time T Af =

When sampling noise: duration T of each stretch must be long enough to capture low-
frequency features; sample interval At must be small enough to capture high-frequency
features.

White Noise refers to X with Sx=const
(X(H)X(t)) = Sx6(t —t)
Same noise power in each unit frequency band. Total variance is infinite.

In practice, bandwidth always cut off by device or sampling rate.
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[inear Filters
@ pae ) — 0n0@ - Gk (6]

Application of a linear filter modifies spectral density.

e /+Oo K(t—t)X(t)dt

Example: output is white noise iy
o y=n-+ =X
plus a low-pass filtering of x )+ 17y
O +1 ) +1
X = + ’Yy = X+ + ,Yn
Iy Iy

Estimator for x involves combining y and its derivative.
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Measuring Spectral Density

+T/2 2
Sl — < lim —’/ t)e' Mgt >

T—+oo T |J_T/2
In practice, spectral density can be measured by averaging over

the spectra of finite patches of data. (T should be much longer than coherence time)
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Searching for Signal with Known Shape

x=n-+h

data = noise + (possible signal)

nis a stationary Gaussian random process with zero mean.

Let us construct a / -
= x(t)y(t)dt
detection statistic P —0 )y ,)\
=y a template

-+ 00 + o0

N / g / h(t)y(t) dt .
—00
Gaussian random variable a non-zero constant (when signal present)
with zero mean. or zero (when signal absent)
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Searching for Signal with Known Shape

i N:/_:On(t)y(t)dt, S:/+ooh(t)y(t)dt.
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Set detection threshold of P > Px

Threshold must be large enough so that false-alarm probability is low.
Signal must be strong enough in order to pass threshold.
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Searching for Signal with Known Shape

weak - = ~ strong
signal E’B signal
=
0.4 e
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x/o
. o] ( O+ )
Set detection threshold of 0 > P« false-alarm probability: € = —erfc | ——
2 20

In presence of signal: S>p~, more than 50% chance detectable

Probability for detection, 1 [ Ox — S] " ler e [er el 5 ]
) V20

when signal present. 2
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Optimal Filter

x=n-+h

o /_:° x(y()dt  o=N+S

N:/_+Oon(t)y(t) dt, S:/+Ooh(t)y(t) dt

— o0

1
Set detection threshold of P > P« false-alarm probability: € = Eerfc ('O—*)

V20
=) = [ 1P@)Is(0) 52

Probability for detection, . — 1 = S
: —erfc = —erfc |erfc” " (26) — —
when signal present. V20 2 20

Q)i (O dQ |?
need to adjust y(t) to maximize S/o, 52 / M s 2%

signal-to-noise ratio / S dQ
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Optimal Filter

2 2
the Cauchy inequality gives S_ — ySnl)| < (h|h)
0% (YSulySn)
. ( template 1s signal inversely

equality sign holds only when — §(Q) = S.(Q)) weighted by spectrum

(5),, - Vo - [~ e

Regions with low S are weighted more in the integral.
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Fourier Transform of a Chirp Signal
h(t) = A(He ™8 | (1) = d(F)
A and Q are slowly varying compared with ()

The Fourier transform
Q) = / A()e®0) it gy

only gets contribution when the phase is stationary, around

)~ Qh(t)

I:l(ﬂ) i A(tQ) e—iq)(tﬂ)‘i—iﬂtﬂ—%i, Qh(tQ) =0

for compact binaries
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Searching for signals with unknown arrival time and phase

(@R e i)
o) = | s

signal filtered using templates with different arrival times

also an inverse Fourier transform
(can be done numerically with FFT, much faster than doing integrals for each ty.)

h(QY) = ho(Q)ei?s8n(Y)

+oo [75(Q)el ] £(Q) dO)
/ S.(Q)) s

No need to search over different values of ¢

As multiple templates are used, threshold must be reset. to keep the same false-alarm probability.
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Searching for signals with unknown frequency
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Summary

Stationary (Gaussian) Noises can be described (fully) by their spectral densities.
Spectral Density characterizes noise power per unit frequency band.

Signal with known shape should be extracted from noisy data with an optimal filter.
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Projects

1. Gravitational waveforms from compact binaries.
A. Write a code generates gravitational waveforms from binaries in circular orbits.
[Here we need to express time and distance in physical units.]
B. Fourier transform this waveform numerically, and compare with the
“Stationary-Phase Approximation”.
2. Generating Gaussian Noise.
A. Write a code that can generate “white noise”. Filter your white noise, and
measure the noise spectrum of the output of the filters.
B. Find the “Advanced LIGO noise spectrum”, and approximate it by sections of
power laws.
C. Generate Advanced LIGO noise.
3. Matched filtering.
A. Add the compact-binary waveform onto Advanced LIGO noise, and use a
matched filter to search for this waveform.
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