Computational Physics and Astrophysics

Lectures based on course notes by Pablo Laguna and Kostas Kokkotas

revamped by Deirdre Shoemaker

Spring 2014

General Topics

- Solving nonlinear equations
- Solving systems of equations
- Interpolation, approximation & curve fitting
- Numerical integration
- Numerical differentiation
- Numerical Solution of ODEs
- Numerical Solution of PDEs
- Monte Carlo Methods
- Fourier Analysis

Textbooks

- A First Course in Computational Physics, Paul L. DeVries and Javier E. Hasbun, 2nd Edition, Jones and Barlett Publishers (2011)
- Numerical Recipes. The Art of Scientific Computing W. H. Press, S. A.Teukolsky, & W. T. Vetterling, 3th Edition, Cambridge University Press (2007)
- Applied Numerical Analysis C. F. Gerald & P. O. Wheatley, 7th Edition, Addison-Wesley (2004)

Outline

- Solving nonlinear equations
 - Bisection method
 - Linear interpolation
 - Newton Raphson method
- Solving systems of equations
 - Gaussian elimination
 - Iterative methods
 - Eigenvalues & Eigenvectors
 - Nonlinear systems
- Interpolation, approximation & curve fitting
 - Interpolating polynomials
 - Spline Curves
 - Rational function approximations

Outline

- Numerical Integration
 - Trapezoidal rule
 - Simpson rules
 - Gaussian quadrature
 - Multiple integrals
- Numerical Differentiation
 - Finite Differences
 - Truncation Errors & Convergence
 - Richardson Extrapolation
- Numerical Solution of ODEs
 - Euler's method
 - Runge-Kutta methods
 - Adam's method
 - Prediction-Correction methods
 - Shooting method

Outline

- Numerical Solution of PDEs
 - Elliptic equations
 - Parabolic equations
 - Hyperbolic equations
- Monte Carlo Methods
 - Simple Monte Carlo integration
 - Von Neumann Rejection Method
 - Maxwell-Boltzmann distribution
 - 2D Ising Model
- Fourier Analysis
 - Fast Fourier Transform
 - Convolution and Correlation