Computational Physics and Astrophysics Solving Nonlinear Equations

Kostas Kokkotas University of Tübingen, Germany

and

Pablo Laguna Georgia Institute of Technology, USA

Spring 2012

The classical root-finding problem consists of, given a function f(x) with $x \in (a, b)$, finding the value(s) r such that

$$f(r)=0$$

The most common approach involves a recurrence relation:

$$x_n = g(x_{n-1})$$

such that

$$\lim_{n\to\infty}x_n=r$$

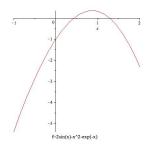
Independently of the method under consideration, one needs to answer the following key points:

- Best choice for the initial guess x_0 .
- Bracketing the root.
- Under which conditions the method converges.
- Speed of convergence.

Bisection method

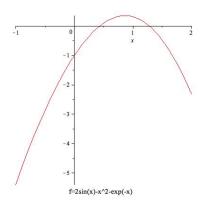
Consider the following function

$$f(x)=2\sin(x)-x^2-e^{-x}$$



- We are interested finding the root between $x_0 = 0$ and $x_1 = 1$.
- Notice that f(0) = -1 and f(1) = 0.31506
- Therefore, there must be at least one root since the function changes sign

We use then the following recurrence procedure



• $x_2 = (x_0 + x_1)/2 = 0.5$ $\rightarrow f(0.5) = 0.1023$

•
$$x_3 = (x_0 + x_2)/2 = 0.25$$

 $\rightarrow f(0.25) = -0.1732$

•
$$x_4 = (x_3 + x_2)/2 = 0.375$$

 $\rightarrow f(0.375) = -0.0954$

•
$$x_5 = (x_4 + x_2)/2 = 0.4375$$

 $\rightarrow f(0.4375) = 0.0103$

•
$$x_6 = (x_4 + x_5)/2 = 0.40625$$

 $\rightarrow f(0.40625) = -0.0408$

• ...

...

• $x_n = r_1 \approx 0.4310378790$

The other root is $r_2 = 1.279762546$.

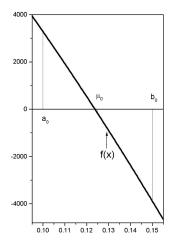
Bisection method algorithm

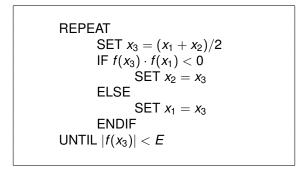
Consider the interval $[a_0, b_0]$. If $f(a_0) \cdot f(b_0) < 0$, then there is at least one root within this interval. Next define, $\mu_0 = (a_0 + b_0)/2$. Then, either:

f(
$$\mu_0$$
) · f(a_0) < 0
f(μ_0) · f(b_0) < 0
f(μ_0) = 0

If (3), the root has been found, else we set a new interval

$$[a_1, b_1] = \begin{cases} [\mu_0, b_0] & \text{if} \quad (2) \\ \\ [a_0, \mu_0] & \text{if} \quad (1) \end{cases}$$





Define the error at a given iteration as

$$\varepsilon_n = |\mathbf{r} - \mathbf{x}_n|$$

For this method

$$\varepsilon_n \leq |a_n - b_n|$$

At every step the error is half of the previous step

$$\varepsilon_n = \frac{\varepsilon_{n-1}}{2} = \frac{\varepsilon_{n-2}}{2^2} = \cdots = \frac{\varepsilon_0}{2^n}$$

Thus, if we demand an error E, the number of steps n to reach this accuracy is

$$n = \log_2 \frac{\varepsilon_0}{E}$$

Linear interpolation

- Assume that the function f(x) in the interval (x_1, x_2) is such that $f(x_1)$ and $f(x_2)$ have opposite signs.
- Introduce the straight line function y(x) connecting the points (x1, f(x1)) and (x2, f(x2)):

$$y(x) = f(x_1) + \frac{f(x_1) - f(x_2)}{x_1 - x_2} (x - x_1)$$

Denote by x₃ the position at which y(x) crosses the axis Ox.
 This point is given by

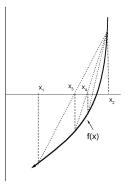
$$x_3 = \frac{x_2 f(x_1) - x_1 f(x_2)}{f(x_1) - f(x_2)} = x_2 - \frac{f(x_2)}{f(x_2) - f(x_1)} (x_2 - x_1)$$

• If in the (x_1, x_2) interval, $f(x) \approx y(x)$, then x_3 is a good approximation to the root r of f(x).

Linear interpolation: Recurrence relation

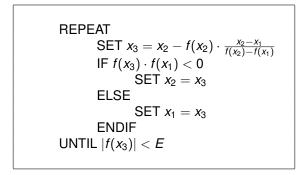
With x_3 , there are three choices:

- **1** If $f(x_1) \cdot f(x_3) < 0$ set $x_2 = x_3$
- 2 If $f(x_2) \cdot f(x_3) < 0$ set $x_1 = x_3$
- If $f(x_3) = 0$ root has been found



Recurence relation:

$$x_{n+2} = x_{n+1} - \frac{f(x_{n+1})}{f(x_{n+1}) - f(x_n)} (x_{n+1} - x_n)$$



Linear interpolation : Convergence

THEOREM: If ξ is the root of the equation f(x) = 0, and $\varepsilon_n = x_n - \xi$ is the error associated with the root estimate x_n , the convergence rate of the linear interpolation method is

 $\varepsilon_{n+1} = \mathbf{k} \cdot \varepsilon_n^{1.618}$

PROOF: From $x_n = \xi + \varepsilon_n$, we have that

$$f(x_n) = f(\xi + \varepsilon_n) = f(\xi) + \varepsilon_n f'(\xi) + \frac{\varepsilon_n^2}{2} f''(\xi)$$
$$= \varepsilon_n f'(\xi) + \frac{\varepsilon_n^2}{2} f''(\xi)$$

then from the recurrence relation

$$x_{n+2} = x_{n+1} - \frac{f(x_{n+1})}{f(x_{n+1}) - f(x_n)} (x_{n+1} - x_n)$$

one has that

$$\varepsilon_{n+2} = \varepsilon_{n+1} - \frac{\varepsilon_{n+1}f'(\xi) + \frac{1}{2}\varepsilon_{n+1}^2 f''(\xi)}{f'(\xi)(\varepsilon_{n+1} - \varepsilon_n) + \frac{1}{2}f''(\xi)(\varepsilon_{n+1}^2 - \varepsilon_n^2)} \cdot (\varepsilon_{n+1} - \varepsilon_n)$$

$$\varepsilon_{n+2} = \varepsilon_{n+1} - \frac{\varepsilon_{n+1}f'(\xi) + \frac{1}{2}\varepsilon_{n+1}^2 f''(\xi)}{f'(\xi) + \frac{1}{2}f''(\xi)(\varepsilon_{n+1} + \varepsilon_n)}$$

$$\varepsilon_{n+2} = \varepsilon_{n+1} \left[1 - \frac{f'(\xi) + \frac{1}{2}\varepsilon_{n+1}f''(\xi)}{f'(\xi) + \frac{1}{2}f''(\xi)(\varepsilon_{n+1} + \varepsilon_n)} \right]$$

$$\varepsilon_{n+2} = \varepsilon_{n+1} \left[\frac{\frac{1}{2}\varepsilon_n f''(\xi)}{f'(\xi) + \frac{1}{2}f''(\xi)(\varepsilon_{n+1} + \varepsilon_n)} \right]$$

$$\varepsilon_{n+2} \approx \varepsilon_{n+1}\varepsilon_n \frac{1}{2}\frac{f''(\xi)}{f'(\xi)}$$

Let $\varepsilon_{n+1} = k \varepsilon_n^m$, then

$$\varepsilon_{n+2} = k \varepsilon_{n+1}^m = k^{m+1} \varepsilon_n^{m^2}$$
$$\varepsilon_{n+1}\varepsilon_n = k \varepsilon_n^{m+1}$$

thus

$$\varepsilon_{n+2} \approx \varepsilon_{n+1} \varepsilon_n \frac{1}{2} \frac{f''(\xi)}{f'(\xi)}$$

implies

$$k^{m+1} \varepsilon_n^{m^2} = k \varepsilon_n^{m+1} \frac{f''(\xi)}{2f'(\xi)}$$

Therefore

$$k^m = \frac{f''(\xi)}{2f'(\xi)}$$

$$m^2 = m+1 \Rightarrow m = 1.618$$

$$\varepsilon_{n+1} = \mathbf{k} \cdot \varepsilon_n^{1.618}$$

Newton Raphson method

If in the neighborhood of the root r of the equation f(x) = 0 the 1st and 2nd derivatives of f(x) are continuous, it is possible to develop a root finding method which is faster than the bisection and linear interpolation method.

Let x_{n+1} and x_n be respectively the n + 1 and n root iterations of the equation f(x) = 0 such that $x_{n+1} = x_n + \delta_n$ with $\delta_n \ll 1$.

Then:

$$f(x_{n+1}) = f(x_n + \delta_n)$$

= $f(x_n) + \delta_n f'(x_n) + \frac{\delta_n^2}{2} f''(x_n) + \cdots$

In the limit $n \to \infty$, we have that $f(x_{n+1}) = 0$, thus

$$0 = f(x_n) + \delta_n f'(x_n) \quad \Rightarrow \quad \delta_n = -\frac{f(x_n)}{f'(x_n)}$$

Newton Raphson method: Recurrence relation

Then

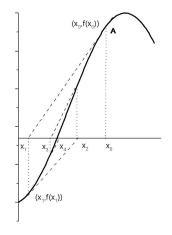
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Notice problems when

- $f'(x_n) = 0$
- $x_{n+2} = x_n$ non-convergent cylce

Recall linear interpolation recurrence relation

$$x_{n+1} = x_n - f(x_n) \left[\frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})} \right]$$



Newton Raphson method : Convergence

If f(r) = 0 such that $x_n = r + \varepsilon_n$, from the recurrence relation

$$r + \varepsilon_{n+1} = r + \varepsilon_n - \frac{f(r + \varepsilon_n)}{f'(r + \varepsilon_n)}$$

$$\varepsilon_{n+1} = \varepsilon_n - \frac{f(r) + \varepsilon_n f'(r) + \frac{1}{2} \varepsilon_n^2 f''(r)}{f'(r) + \varepsilon_n f''(r)}$$

$$\varepsilon_{n+1} = \varepsilon_n - \frac{\varepsilon_n f'(r) + \frac{1}{2} \varepsilon_n^2 f''(r)}{f'(r) + \varepsilon_n f''(r)}$$

$$\frac{\varepsilon_{n+1}}{\varepsilon_n} = 1 - \frac{f'(r) + \frac{1}{2} \varepsilon_n f''(r)}{f'(r) + \varepsilon_n f''(r)}$$

$$\frac{\varepsilon_{n+1}}{\varepsilon_n} = \frac{\frac{1}{2} \varepsilon_n f''(r)}{f'(r) + \varepsilon_n f''(r)} \approx \varepsilon_n \frac{1}{2} \frac{f''(r)}{f'(r)}$$

we get that

$$\varepsilon_{n+1} = -\frac{f''(r)}{2f'(r)} \cdot \varepsilon_n^2$$

That is, quadratic convergence

$$\begin{array}{l} \mathsf{IF} \ f'(x) \neq 0 \\ \mathsf{REPEAT} \\ \mathsf{SET} \ x = x - f(x) / f'(x) \\ \mathsf{UNTIL} \ |f(x)| < E \\ \mathsf{ENDIF} \end{array}$$

Newton Halley method

Recall

$$f(x_{n+1}) = f(x_n + \delta_n) = f(x_n) + \delta_n f'(x_n) + \frac{\delta_n^2}{2} f''(x_n) + \dots$$

$$f(x_n) + \delta_n \left[f'(x_n) + \frac{\delta_n}{2} f''(x_n) \right] = 0$$
$$\delta_n = -\frac{f(x_n)}{f'(x_n) + \frac{\delta_n}{2} f''(x_n)}$$

Substitute the previous Newton Raphson result

$$\delta_n \approx -\frac{f(x_n)}{f'(x_n)}$$

in the denominator

Then

$$\delta_n = -\frac{f(x_n)}{f'(x_n) - \frac{f(x_n)f''(x_n)}{2f'(x_n)}}$$

so

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n) - \frac{f(x_n)f''(x_n)}{2f'(x_n)}}$$

$$x_{n+1} = x_n - \frac{2f(x_n)f'(x_n)}{2f'(x_n)f'(x_n) - f(x_n)f''(x_n)}$$

Notice that for $f''(x_n) = 0$ we recover that traditional Newton-Raphson method.

Newton Halley's methods achieves cubic convergence:

$$\varepsilon_{n+1} = -\left[\frac{1}{6}\frac{f'''\left(\xi\right)}{f'\left(\xi\right)} - \frac{1}{4}\left(\frac{f''\left(\xi\right)}{f'\left(\xi\right)}\right)^2\right] \cdot \varepsilon_n^3$$

IF
$$f'(x) \neq 0$$
 AND $f''(x) \neq 0$
REPEAT
SET $x = x - 2 f(x) f'(x) / (2 f'(x) f'(x) - f(x) f''(x))$
UNTIL $|f(x)| < E$
ENDIF

EXAMPLE: Use the Newton-Raphson and Newton-Halley method to calculate square root of a number Q (here Q = 9). Set $f(x) = x^2 - Q$, then

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{Q}{x_n} \right)$$
 (Raphson) $x_{n+1} = \frac{x_n^3 + 3x_n Q}{3x_n^2 + Q}$ (Halley)

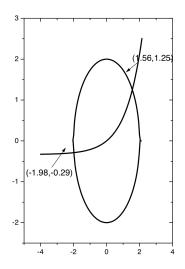
Newton	Error	Halley	Error
<i>x</i> ₀ =15	$\varepsilon_0 = 12$	<i>x</i> ₀ =15	$\varepsilon_0 = 12$
<i>x</i> ₁ =7.8	$\varepsilon_1 = 4.8$	<i>x</i> ₁ =5.526	$\varepsilon_1 = 2.5$
<i>x</i> ₂ =4.477	$\varepsilon_2 = 1.477$	<i>x</i> ₂ =3.16024	$\varepsilon_2 = 0.16$
x ₃ =3.2436	$\varepsilon_3 = 0.243$	<i>x</i> ₃ =3.00011	$arepsilon_3 = 1.05 imes 10^{-4}$
<i>x</i> ₄ =3.0092	$arepsilon_4=9.15 imes10^{-3}$	<i>x</i> ₄ =3.0000	$arepsilon_4 = 3.24 imes 10^{-14}$

An example of two non-linear equations is the following:

$$f(x,y) = e^{x} - 3y - 1$$

$$g(x,y) = x^{2} + y^{2} - 4$$

f(x, y) = 0 and g(x, y) = 0 are two curves on the xy plane.



Let's assume that after n + 1 iterations the method converged to the solution (x_{n+1}, y_{n+1}) i.e. $f(x_{n+1}, y_{n+1}) \approx 0$ and $g(x_{n+1}, y_{n+1}) \approx 0$. Then if $x_{n+1} = x_n + \varepsilon_n$ and $y_{n+1} = y_n + \delta_n$, then

$$0 \approx f(x_{n+1}, y_{n+1}) = f(x_n + \varepsilon_n, y_n + \delta_n) \approx f(x_n, y_n) + \varepsilon_n \left(\frac{\partial f}{\partial x}\right)_n + \delta_n \left(\frac{\partial f}{\partial y}\right)_n$$

$$0 \approx g(x_{n+1}, y_{n+1}) = g(x_n + \varepsilon_n, y_n + \delta_n) \approx g(x_n, y_n) + \varepsilon_n \left(\frac{\partial g}{\partial x}\right)_n + \delta_n \left(\frac{\partial g}{\partial y}\right)_n$$

Solving for ε_n and δ_n

$$\varepsilon_n = \frac{-f\frac{\partial g}{\partial y} + g\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}\frac{\partial g}{\partial y} - \frac{\partial g}{\partial x}\frac{\partial f}{\partial y}} \quad \text{and} \quad \delta_n = \frac{-g\frac{\partial f}{\partial x} + f\frac{\partial g}{\partial x}}{\frac{\partial f}{\partial x}\frac{\partial g}{\partial y} - \frac{\partial g}{\partial x}\frac{\partial f}{\partial y}}$$

Since $x_{n+1} = x_n + \varepsilon_n$ and $y_{n+1} = y_n + \delta_n$, the recurrence relations are:

$$x_{n+1} = x_n - \left(\frac{f \cdot g_y - g \cdot f_y}{f_x \cdot g_y - g_x \cdot f_y}\right)_n$$

$$y_{n+1} = y_n - \left(\frac{g \cdot f_x - f \cdot g_x}{f_x \cdot g_y - g_x \cdot f_y}\right)_n$$

where $f_x = \frac{\partial f}{\partial x}$