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Solving nonlinear equations

The classical root-finding problem consists of, given a function f (x)
with x € (a, b), finding the value(s) r such that

f(ry=0
The most common approach involves a recurrence relation:
Xn = 9 (Xn-1)

such that
lim x,=r

n—oo
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Independently of the method under consideration, one needs to
answer the following key points:

@ Best choice for the initial guess xp.

@ Bracketing the root.

@ Under which conditions the method converges.
@ Speed of convergence.
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Bisection method

Consider the following function

f(x) =2sin(x) — x® — e~

@ We are interested finding the root between
Xo=0and x; =1.
@ Notice that f(0) = —1 and f(1) = 0.31506

@ Therefore, there must be at least one root
since the function changes sign

<)

54

£25in(x)-x"2-exp(x)
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We use then the following recurrence procedure
@ X2 = (X +x1)/2=0.5
— f(0.5) = 0.1023

@ X3 =(Xo+x2)/2=0.25
— f(0.25) = —0.1732

2] @ X4 = (X3 + X2)/2 =0.375
— f(0.375) = —0.0954
# @ X5 = (Xa + X2)/2 = 0.4375

— £(0.4375) = 0.0103

@ Xg = (X4 + X5)/2 = 0.40625
~5 £(0.40625) = —0.0408

f=2sin(x}-x"2-exp(-x} (]

@ X, =r ~ 0.4310378790
The other root is rn» = 1.279762546.
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Bisection method algorithm

Consider the interval [ao, bo]. If f(ao) - f(bo) < O, then there is at least one
root within this interval. Next define, 1o = (a0 + bo)/2. Then, either:

4000

o f(NO) . f(ao) <0 2000 4
@ f(uo) - f(bo) <0
© (ko) =0 " "

If (3), the root has been found, else we
set a new interval

{ [0, bo] i (2)
[ar, br] =
[ao, /LO] if (1 ) -4000

2000 4 f(x)

T T T T T T
010 011 012 013 014 015
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REPEAT
SET x3 = (x1 + x2)/2
IF f(x3) - f(x1) <O

SET Xo = X3
ELSE

SET X1 = X3
ENDIF

UNTIL |f(x3)| < E
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Bisection method convergence

Define the error at a given iteration as
en=|r— Xnl

For this method
en < |an - bn‘

At every step the error is half of the previous step

En = En—1 _ €n—-2 L €o
2 22 2n
Thus, if we demand an error E, the number of steps n to reach this
accuracy is
n=log o
2E
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Linear interpolation

@ Assume that the function f(x) in the interval (x1, x2) is such that
f(x1) and f(x2) have opposite signs.

@ Introduce the straight line function y(x) connecting the points
(x1,f(x1)) and (x2, f(x2)):

f(x1) —f(x)

= f —
y(x) =1 0a)+ === = (x = x)
@ Denote by x3 the position at which y(x) crosses the axis Ox.

This point is given by

X2f(X1) — X f(Xg) f(Xg)
X3 = =X - (X —X
T ) ) 1) — A P2
@ Ifin the (x4, x2) interval, f(x) = y(x), then x3 is a good
approximation to the root r of f(x).
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Linear interpolation: Recurrence relation

With x3, there are three choices:
(4 ] Iff(x1)~f(x3)<OSetX2:x3
9 |ff(X2)-f(X3)<0 set xy = X3

© If f(x3) = 0 root has been
found

Recurence relation:

_ f(Xn11)
XI‘H—2 — Xn+1 - f(Xn+1) _ f(Xn) (XI'I+1 Xn)
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Linear interpolation

REPEAT
SET X3 = Xo — f(X2) . %
IF f(x3) - f(x1) <0
SET Xo = X3
ELSE
SET X1 = X3
ENDIF

UNTIL |f(xs)| < E
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Linear interpolation : Convergence

THEOREM: If ¢ is the root of the equation f(x) =0, and ¢, = x, — &
is the error associated with the root estimate x,, the convergence rate
of the linear interpolation method is

~1.618
En+1 :k':n

PROOF: From x, = £ + 5, we have that

f(xn) = F(§+en)=1(&)+enl (§)+ S0 (©)

2
! E% 1!
= el (&) + 2
then from the recurrence relation
f(xn+1)
Xnito = Xnt1 — 77—+ (Xnt1 — X
n+2 n+1 f(Xn+1) — f(Xn) ( n+1 n)

one has that
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entf'(€) + 3ea 4 F"(6)
End2 = Eny1 — 2) '(5n+1 _En)

fl(g)(5n+1 )+ f”(g)( €nt1 —€n
enitF'(€) + 3e2,,1(€)
/(&) + 3(€)(ent1 + €n)
T PR (GRS DRI
e " F©) + 1) (Ens + 2n)

zenf"(€)
F(€) + 3"(€)(ens1 +en)

117(§)
5n+15n§@

Ent2 = Epp1 —

Eny2 =

Q

Ent2
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Letepi1 = kej, then

Ent2 = kenm+1 = k™ gnmz
Enp1en = kemt!
thus
- 11(¢)
Ent2 = 5n+15n§%
implies
2 (€)
km+1 m — k m+1
o 2r(g)
Therefore
o 119
2f'(&)
m* = m+1=m=1618
et = k~5l,'618
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Newton Raphson method

If in the neighborhood of the root r of the equation f(x) = 0 the 1st
and 2nd derivatives of f(x) are continuous, it is possible to develop a
root finding method which is faster than the bisection and linear
interpolation method.

Let x,.1 and x, be respectively the n+ 1 and n root iterations of the
equation f(x) = 0 such that x,.1 = x, + 0, with 6, < 1.

Then:
f(Xn+1) = f(Xa+dn)

52
f(xn) + onf" (Xn) + E”f” (Xn) + -

In the limit n — oo, we have that f(x,.1) = 0, thus

0=f(Xn) +0nf'(Xa) = bn=-—
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Newton Raphson method: Recurrence relation

Then

_ f(Xn)
Xn+1 = Xn — m

Notice problems when

@ f'(xp) =0
@ X,12 = Xp NOn-convergent
cylce

Recall linear interpolation
recurrence relation

B (Xn — Xn— )
o1 =t t) [ =200 |
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Newton Raphson method : Convergence

If f(r) = 0 such that x, = r + 5, from the recurrence relation

B f(r+en)
r+ En+1 = r+ En — m
B f(r)y+enf' (r)+ %5,277‘// ()
En+1 = &np— f/ (r) + €nf// (r)
B enf (r) + %g%f” (n
€n+1 = En— f! (r) + Enf” (I')
enct 4 1)+ Seaf” (1)
€n fr(r) +enf" (r)
vt del"() 1)
en (N Fenf(r)” "2F(r)
we get that
R L (o R
M Tf ()

That is, quadratic convergence
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Newton-Raphson

IFf(x)#0
REPEAT
SET x = x — f(x)/f (x)
UNTIL |f(x)| < E
ENDIF

Kokkotas & Laguna Computational Physics and Astrophysics



Newton Halley method

Recall

62
F(Xne1) = £ (X0 + 6n) = £ (Xa) + Inf' (Xn) + 1" (Xa) + ...

)
f(Xn) + 6n [ (Xn) + E"f” (x)| =0
_ f(Xn)
f'(Xn) + 2" (Xn)

Substitute the previous Newton Raphson result

f(Xn)
f'(Xn)

(Sn:

o =~ —

in the denominator
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Then
f(xn)

f/(Xn) _ f()z(nf)&/)'(i))(n)

SO

f(xn)

O 7 (Xn
f/(Xn) - ()2( f)’(Xi))( )

Xn+1 = Xn—

2 f(xn)f' (xn)
2 (X)) (Xn) — F(Xn)"(Xn)

Xn+1 = Xn

Notice that for f/(x,) = 0 we recover that traditional Newton-Raphson
method.

Newton Halley’s methods achieves cubic convergence:
1 (5) 1 (f” (5))2 .
Entl =~ | x5 i 7 “€p

6 F() 4\F()
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Newton-Halley

IF f'(x) # 0 AND f”(x) # 0
REPEAT
SET x =x —2f(x) f'(x)/(2F(x) f'(x) — f(x) f'(x))
UNTIL |f(x)| < E
ENDIF
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EXAMPLE: Use the Newton-Raphson and Newton-Halley method to
calculate square root of a number Q (here Q = 9).
Set f(x) = x — Q, then

1 Q x3+3x,Q
X1 = 5 (xn+ X) (Raphson) Xxp4q = ﬁ (Halley)

n n

Newton Error Halley Error

Xo=15 eo=12 Xp=15 go=12

x1=7.8 g1 =4.8 Xx1=5.526 g1 =25
Xo=4.477 | ep =1.477 X2=3.16024 €2 =0.16
X3=3.2436 | €3 = 0.243 X3=3.00011 e3=1.05x107*
x4=3.0092 | ¢4 =9.15 x 103 | x,=3.0000... 4 =324 x 10" ™
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Non-linear systems of equations

An example of two non-linear
equations is the following:

flx,y) = € —3y—1
gx.y) = x*+y*-4

f(x,y) =0and g(x,y) = 0 are two
curves on the xy plane.

(-1.98,0.29)
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Newton Raphson method for 2 equations

Let's assume that after n + 1 iterations the method converged to the
solution (Xn+1, ¥Ynt1) i-€. f(Xnt1, Yne1) = 0 and g(Xp+1, Yni1) = 0. Then
if Xnr1 = Xn+epand Ynr1 = Yo+ dn, then

. of - [ Of
0 ~ f(Xnt1, Yni1) = F(Xn+en, Ynt+0n) = f(Xn, Yn)+en <8X>n+0n (m/)n

0 (0
0~ g(Xnt1, Yni1) = 9(Xn+en, Ynt+0n) = 9(Xn, Yn)+en (;)n"‘on <8}g/)n

n = ardog _ ogof or 09 _ g of
ox oy ox oy ox oy ox oy
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Since Xp11 = Xp + ep and yp 1 = yn + dn, the recurrence relations are:

_ f-gy—g-ty
Xnt1 = Xn<fx'gy—gx'fy ]

y _(g'fx_f'gx)
" \hgy -9 f/,

Yn+1

where f, = £
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