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Solving nonlinear equations

The classical root-finding problem consists of, given a function f (x)
with x ∈ (a,b), finding the value(s) r such that

f (r) = 0

The most common approach involves a recurrence relation:

xn = g (xn−1)

such that
lim

n→∞
xn = r
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Independently of the method under consideration, one needs to
answer the following key points:

Best choice for the initial guess x0.
Bracketing the root.
Under which conditions the method converges.
Speed of convergence.
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Bisection method

Consider the following function

f (x) = 2 sin(x)− x2 − e−x

We are interested finding the root between
x0 = 0 and x1 = 1.
Notice that f (0) = −1 and f (1) = 0.31506
Therefore, there must be at least one root
since the function changes sign
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We use then the following recurrence procedure

x2 = (x0 + x1)/2 = 0.5
→ f (0.5) = 0.1023
x3 = (x0 + x2)/2 = 0.25
→ f (0.25) = −0.1732
x4 = (x3 + x2)/2 = 0.375
→ f (0.375) = −0.0954
x5 = (x4 + x2)/2 = 0.4375
→ f (0.4375) = 0.0103
x6 = (x4 + x5)/2 = 0.40625
→ f (0.40625) = −0.0408
...
xn = r1 ≈ 0.4310378790

The other root is r2 = 1.279762546.
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Bisection method algorithm
Consider the interval [a0, b0]. If f (a0) · f (b0) < 0, then there is at least one
root within this interval. Next define, µ0 = (a0 + b0)/2. Then, either:

1 f (µ0) · f (a0) < 0
2 f (µ0) · f (b0) < 0
3 f (µ0) = 0

If (3), the root has been found, else we
set a new interval

[a1, b1] =


[µ0, b0] if (2)

[a0, µ0] if (1)
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Bisection

REPEAT
SET x3 = (x1 + x2)/2
IF f (x3) · f (x1) < 0

SET x2 = x3
ELSE

SET x1 = x3
ENDIF

UNTIL |f (x3)| < E
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Bisection method convergence

Define the error at a given iteration as

εn = |r − xn|

For this method
εn ≤ |an − bn|

At every step the error is half of the previous step

εn =
εn−1

2
=
εn−2

22 = · · · = ε0

2n

Thus, if we demand an error E , the number of steps n to reach this
accuracy is

n = log2
ε0

E
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Linear interpolation

Assume that the function f (x) in the interval (x1, x2) is such that
f (x1) and f (x2) have opposite signs.
Introduce the straight line function y(x) connecting the points
(x1, f (x1)) and (x2, f (x2)):

y (x) = f (x1) +
f (x1)− f (x2)

x1 − x2
(x − x1)

Denote by x3 the position at which y(x) crosses the axis Ox .
This point is given by

x3 =
x2f (x1)− x1f (x2)

f (x1)− f (x2)
= x2 −

f (x2)

f (x2)− f (x1)
(x2 − x1)

If in the (x1, x2) interval, f (x) ≈ y(x), then x3 is a good
approximation to the root r of f (x).
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Linear interpolation: Recurrence relation

With x3, there are three choices:

1 If f (x1) · f (x3) < 0 set x2 = x3

2 If f (x2) · f (x3) < 0 set x1 = x3

3 If f (x3) = 0 root has been
found

Recurence relation:

xn+2 = xn+1 −
f (xn+1)

f (xn+1)− f (xn)
(xn+1 − xn)
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Linear interpolation

REPEAT
SET x3 = x2 − f (x2) · x2−x1

f (x2)−f (x1)

IF f (x3) · f (x1) < 0
SET x2 = x3

ELSE
SET x1 = x3

ENDIF
UNTIL |f (x3)| < E
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Linear interpolation : Convergence

THEOREM: If ξ is the root of the equation f (x) = 0, and εn = xn − ξ
is the error associated with the root estimate xn, the convergence rate
of the linear interpolation method is

εn+1 = k · ε1.618
n

PROOF: From xn = ξ + εn, we have that

f (xn) = f (ξ + εn) = f (ξ) + εnf ′ (ξ) +
ε2

n

2
f ′′ (ξ)

= εnf ′ (ξ) +
ε2

n

2
f ′′ (ξ)

then from the recurrence relation

xn+2 = xn+1 −
f (xn+1)

f (xn+1)− f (xn)
(xn+1 − xn)

one has that
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εn+2 = εn+1 −
εn+1f ′(ξ) + 1

2ε
2
n+1f ′′(ξ)

f ′(ξ)(εn+1 − εn) +
1
2 f ′′(ξ)(ε2

n+1 − ε2
n)
· (εn+1 − εn)

εn+2 = εn+1 −
εn+1f ′(ξ) + 1

2ε
2
n+1f ′′(ξ)

f ′(ξ) + 1
2 f ′′(ξ)(εn+1 + εn)

εn+2 = εn+1

[
1−

f ′(ξ) + 1
2εn+1f ′′(ξ)

f ′(ξ) + 1
2 f ′′(ξ)(εn+1 + εn)

]

εn+2 = εn+1

[
1
2εnf ′′(ξ)

f ′(ξ) + 1
2 f ′′(ξ)(εn+1 + εn)

]

εn+2 ≈ εn+1εn
1
2

f ′′(ξ)
f ′(ξ)
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Let εn+1 = k εm
n , then

εn+2 = k εm
n+1 = km+1 εm2

n

εn+1εn = k εm+1
n

thus
εn+2 ≈ εn+1εn

1
2

f ′′(ξ)
f ′(ξ)

implies

km+1 εm2

n = k εm+1
n

f ′′(ξ)
2f ′(ξ)

Therefore

km =
f ′′(ξ)
2f ′(ξ)

m2 = m + 1⇒ m = 1.618

εn+1 = k · ε1.618
n
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Newton Raphson method

If in the neighborhood of the root r of the equation f (x) = 0 the 1st
and 2nd derivatives of f (x) are continuous, it is possible to develop a
root finding method which is faster than the bisection and linear
interpolation method.

Let xn+1 and xn be respectively the n + 1 and n root iterations of the
equation f (x) = 0 such that xn+1 = xn + δn with δn � 1.

Then:

f (xn+1) = f (xn + δn)

= f (xn) + δnf ′ (xn) +
δ2

n

2
f ′′ (xn) + · · ·

In the limit n→∞, we have that f (xn+1) = 0, thus

0 = f (xn) + δnf ′(xn) ⇒ δn = − f (xn)

f ′(xn)
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Newton Raphson method: Recurrence relation

Then

xn+1 = xn −
f (xn)

f ′(xn)

Notice problems when
f ′(xn) = 0
xn+2 = xn non-convergent
cylce

Recall linear interpolation
recurrence relation

xn+1 = xn− f (xn)

[
(xn − xn−1)

f (xn)− f (xn−1)

]
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Newton Raphson method : Convergence

If f (r) = 0 such that xn = r + εn, from the recurrence relation

r + εn+1 = r + εn −
f (r + εn)

f ′ (r + εn)

εn+1 = εn −
f (r) + εnf ′ (r) + 1

2ε
2
nf ′′ (r)

f ′ (r) + εnf ′′ (r)

εn+1 = εn −
εnf ′ (r) + 1

2ε
2
nf ′′ (r)

f ′ (r) + εnf ′′ (r)

εn+1

εn
= 1−

f ′ (r) + 1
2εnf ′′ (r)

f ′ (r) + εnf ′′ (r)

εn+1

εn
=

1
2εnf ′′ (r)

f ′ (r) + εnf ′′ (r)
≈ εn

1
2

f ′′(r)
f ′(r)

we get that

εn+1 = − f ′′ (r)
2f ′ (r)

· ε2
n

That is, quadratic convergence
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Newton-Raphson

IF f ′(x) 6= 0
REPEAT

SET x = x − f (x)/f ′(x)
UNTIL |f (x)| < E

ENDIF
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Newton Halley method

Recall

f (xn+1) = f (xn + δn) = f (xn) + δnf ′ (xn) +
δ2

n

2
f ′′ (xn) + . . .

f (xn) + δn

[
f ′ (xn) +

δn

2
f ′′ (xn)

]
= 0

δn = − f (xn)

f ′(xn) +
δn
2 f ′′(xn)

Substitute the previous Newton Raphson result

δn ≈ −
f (xn)

f ′(xn)

in the denominator
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Then
δn = − f (xn)

f ′(xn)− f (xn)f ′′(xn)
2 f ′(xn)

so

xn+1 = xn −
f (xn)

f ′(xn)− f (xn)f ′′(xn)
2 f ′(xn)

xn+1 = xn −
2 f (xn)f ′(xn)

2 f ′(xn)f ′(xn)− f (xn)f ′′(xn)

Notice that for f ′′(xn) = 0 we recover that traditional Newton-Raphson
method.

Newton Halley’s methods achieves cubic convergence:

εn+1 = −

[
1
6

f ′′′ (ξ)
f ′ (ξ)

− 1
4

(
f ′′ (ξ)
f ′ (ξ)

)2
]
· ε3

n
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Newton-Halley

IF f ′(x) 6= 0 AND f ′′(x) 6= 0
REPEAT

SET x = x − 2 f (x) f ′(x)/(2 f ′(x) f ′(x)− f (x) f ′′(x))
UNTIL |f (x)| < E

ENDIF
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EXAMPLE: Use the Newton-Raphson and Newton-Halley method to
calculate square root of a number Q (here Q = 9).
Set f (x) = x2 −Q, then

xn+1 =
1
2

(
xn +

Q
xn

)
(Raphson) xn+1 =

x3
n + 3 xn Q
3 x2

n + Q
(Halley)

Newton Error Halley Error
x0=15 ε0 = 12 x0=15 ε0 = 12
x1=7.8 ε1 = 4.8 x1=5.526 ε1 = 2.5
x2=4.477 ε2 = 1.477 x2=3.16024 ε2 = 0.16
x3=3.2436 ε3 = 0.243 x3=3.00011 ε3 = 1.05× 10−4

x4=3.0092 ε4 = 9.15× 10−3 x4=3.0000... ε4 = 3.24× 10−14
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Non-linear systems of equations

An example of two non-linear
equations is the following:

f (x , y) = ex − 3y − 1
g(x , y) = x2 + y2 − 4

f (x , y) = 0 and g(x , y) = 0 are two
curves on the xy plane.
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Newton Raphson method for 2 equations

Let’s assume that after n + 1 iterations the method converged to the
solution (xn+1, yn+1) i.e. f (xn+1, yn+1) ≈ 0 and g(xn+1, yn+1) ≈ 0. Then
if xn+1 = xn + εn and yn+1 = yn + δn, then

0 ≈ f (xn+1, yn+1) = f (xn+εn, yn+δn) ≈ f (xn, yn)+εn

(
∂f
∂x

)
n
+δn

(
∂f
∂y

)
n

0 ≈ g(xn+1, yn+1) = g(xn+εn, yn+δn) ≈ g(xn, yn)+εn

(
∂g
∂x

)
n
+δn

(
∂g
∂y

)
n

Solving for εn and δn

εn =
−f ∂g

∂y + g ∂f
∂y

∂f
∂x

∂g
∂y −

∂g
∂x

∂f
∂y

and δn =
−g ∂f

∂x + f ∂g
∂x

∂f
∂x

∂g
∂y −

∂g
∂x

∂f
∂y
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Since xn+1 = xn + εn and yn+1 = yn + δn, the recurrence relations are:

xn+1 = xn −
(

f · gy − g · fy
fx · gy − gx · fy

)
n

yn+1 = yn −
(

g · fx − f · gx

fx · gy − gx · fy

)
n

where fx = ∂f
∂x
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