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Introduction

In many instances we need to solve A - x = b, where

ann a a3 - an Xy b
a1 ap ams - an X2 bo
A—| @1 a2 as - aw x=| X b= | bs
any an2 awns --- amn XN by

This requires
@ Finding A—', the inverse of the matrix
@ Computing the determinant of a matrix A

@ The eigenvalues and eigenvectors of a matrix A. That is,
A-v=)\v,
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Gauss Elimination Method

Consider A - x = b with A a N x N matrix with det (A) = 0. That is,

a1 X1 + anXo + aiXs + ...+ ainxn = by
a01X1 + 8ooXo + 83Xz + ... + @onXN = bo
az1Xy + as2Xo + azzXs + ... + asnxy = bs
an1X1 + anzXe + ansXa + ... + awxy = b

We will try to transform it into an upper-triangular linear system.

aix1 +aipXe +aisxs +.. +anxn = 61
0 +aXo  +apsXz +... +anxy = b
0 +0 +333X3 +... +‘asnxy = bs
0 +0 +0 +... 4+awnwxn = EN
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Given

ayy a2 a3 - aIn
ayy do2 a3 - aoN
A=| @1 @& das -+ an
ant amn2 ans - amn
construct
1 0O 0 - 0
—& 41 0 . 0
a
M, — —&i 01 --- 0
_ant
an 00 1

and compute M; A - x = M;b
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where

an ai ais -
822*%812 3237%3113 e a ,%aﬂv
a a 2
a a a
0 any — Map ang— az - aww — Pray
air  ae ais AN
O 322(1) 323(1) . a2N(1)
M. A = 0 332(1) 333(1) cen aSN(1)
0 aN2(1) aN3(1) aNN(”

and
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by b1(1)

by — ?a by
Mb=| bs—aibr | = | b
by — %m bN(1)

The procedure can be repited to eliminate now as,(")
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Gauss Method

After N — 1 steps we get the the desired upper-triangular system:

ai Xy + aieXe + aizXs + -+ ainxn = by
(1) (1) (1) - p»
8y X2 + ap3 X3 + + anXn = 5
axs+--+alxy = bP
)

The Nth (last) equation above yields :

bI(\IN71) f (N-1) 0
XN= oy for ayy C#
ann

while the rest of the values can be calculated via the relation:

/1) Zal1xk

k=it -
X; = (/I—+1 ) for &~ +0
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@ The number of arithmetic operations needed is
(4N® +-9N2 — 7N)/6.

@ If a matrix is transformed into an upper-triangular or
lower-triangular or diagonal form then the determinant is simply

N
detA = a1 - ax-as-- aw =] [ ai
=1
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Notice that there is trouble when a’ V_o

11) Zal1xk
k=i+1

Xi = - .
(i—1) il
a;;

The number a; in the position (i, /) that is used to eliminate x; in rows
i+1,i+2,...,Nis called the jth pivotal element and the ith row is
called the pivotal row.

If a(’ = 0, row / cannot be used to eliminate, the elements in column /

below the diagonal. It is neccesary to find a row j, where a ;é 0 and
J > i and then interchange row / and j so that a nonzero plvot element
is obtained.
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The Jacobi Method

Any system of N linear equations with N unknowns can be written in
the form:
fi(X1, X, . XN) =
(X1, X2, ..., Xn) =

fn(X17X23 "'aXN) = O

One can always rewrite the system in the form x; = g; (x,-); that is,

X1 = g1(X2,X3,...,XN)
Xo = g2(X17X37"~7XN)
XN = gn(X1, X2, ..., XN—1)
or N
b 1
= Y
diji i
J=1,j#
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Therefore, by giving N initial guesses xf0)7 X2(0)7 cey ,(\,O), we create the

recurrence relation

K K K
X = g (xR X))
b 1 & K
_ b s g
ai & .
J=1,#i

which will converge to the solution of the system if:

N
lai| > > |a;| (Diagonal dominat)
=1

independent on the choice of the initial values x{”, x{”), ... x{?).
The recurrence relation can be written in a matrix form as:

x&) —_p-1p _p-1cx®

where A = D + C with D = diag(A) and C all the rest.
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Consider the following example

Ax—-y+z =7
4x -8y +z = -21
—-2x+y+5z = 15

with solutions x = 2, y = 4, z = 3. Construct the recurrence
relationships

XD = (7 4y 2(0) /4
yED = (21 4 4x0 4 20y /8
Zk = (154 2x0) — y(0y /5

Starting with (1,2, 2), one gets

(1,2,2) —(1.75,3.375,3)  — (1.844,3.875,3.025)
— (1.963,3.925,2.963) — (1.991,3.977,3.0) — (1.994,3.995,3.001)

I.e. with 5 iterations we reached the solution with 3 digits accuracy.
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Gauss - Seidel Method

Recall the Jacobi method

N
wkty _ [, 0
X; = o b; — | Z %,
J=1, i
@ With ( (0) xé )7...,x,(vo)),
(1) 1 & (0)
X1 = ; b1 Z a1jx/.
11 j=2
@ Next with (x1(1), XZ(O), xéo), . x,(\,o)),
@ _ 1 o
X. = — | b —ax( a
> 2 2 21 Z 3j X
o Next with (x\", x{' ),xc,(,o),. (0)) and so on.
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Recurrence relation:

N
(k+1) 1 (k)
X. = — | b - aijx;
! an 1 lz—; k!
(k+1) 1 (k) N (k)
+1) + ,
X2 am by — ag1x; - jz_; ;X
1 i—1 N
A1 LR S AR LA
1l . P
Jj=1 J=i+1
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The method will converge if:
N
ail > > ai
J=1,0#
This procedure in a “matrix form” is:
x(k+1) — p-1 [B — Lx(D Ux('ﬂ

where
A=L+ D + U

lower  diagonal  upper
The matrix L has the elements of below the diagonal A, the matrix D

only the diagonal elements of A and finally the matrix U the elements
of matrix A over the diagonal.
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The recurrence relation for the previous example becomes in this

case
x(k+1) 7+ y® — 2
4
i) 21 + 4x(k+1) 4 7(K)
8
k1) 15 4 2x(kH1) — (ki)

5

leading to the following sequence of approximate solutions:

(1,2,2) — (1.75,3.75,2,95)
— (1.95,3.97,2.99)
— (1.996,3.996, 2.999)

i.e. here we need only 3 iterations to arrive to the same accuracy of
solutions as with Jacobi’s method which needed 5 iterations.
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Eigenvalues and Eigenvectors

Given a matrix A, if there exist a scalar \ and vector u such that
A-u=)\u

A is called an eigenvalue of the matrix A and u the corresponding

eigenvector.
1 2 3 2 2
-1 3 1 . 1 | =-1. 1
2 0 1 -2 -2
Q)

A u® A u

Example:

in which u( = (2,1, -2)" is the e-vector and \; = —1 the
corresponding e-value of A.
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Equation A - u = \u is equivalent to det (A — Al) = 0. That is

1) 2 3
det| —1 3—-\ 1 =X -5\ 4+3\+9=0
2 0 1-\

and the e-values will be the roots of the characteristic polynomial
(here \j = —1, 3 and 3).
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Given a matrix A, such that
Au? = \ul)  (1<i<N)
there will always be a dominant e-value 1. That is,
M= Xe| = [Ag] = ... = [Aw]

In addition, any vector X can be written as a linear combination of the
N e-vectors {u u® ... uM} Thatis,

x = au") + aou® 4 ... 4 gyuV
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Consider

xW = A x=a\ful + a fu® + - 4 ayafu®)

k k
Nf lam(‘) +ap (;\2> u® ... 4 ay ())\‘N) u(N)]
1 1

Since )1 is the absolute largest e-value, limx_, o (A/-//\1)k =0. Thus,
for a large enough k, we have that

xK) = AF . x &~ Mgy u()

and in particular
x(k+1) — )\1 x(k)

Therefore, for each component of the vectors x(*) and x(*+"), we have

that
[x(k+1)]a

=)\
x®p —
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Example:

1 0 1
A= -1 2 2
1 0 3
with e-values:
A = 3.41421356
Ao = 2
A3 = 0.585786

and corresponding e-vectors :

u® = (0.3694, 1,0.8918)"
u® = (0,1,0)"
u® = (0.7735, 1, —0.3204)"
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Setx=(1,2,1 )T, and multiply it with the 5th and 6th power of A

68 0 164 232 0 560
A5 =| 136 32 428 A® = | 532 64 1484

164 0 396 560 0 1352
Thus,

x® = AS.x=(232628,560)"

x® = AP.x=(792,2144,1912)"
which yields

(6)
[x ]a—EN%N%~3414286

M R =
T x®], 2327 628 560
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