


Linear interpolation

Assume that the function f (x) in the interval (x1, x2) is such that
f (x1) and f (x2) have opposite signs.
Introduce the straight line function y(x) connecting the points
(x1, f (x1)) and (x2, f (x2)):

y (x) = f (x1) +
f (x1)� f (x2)

x1 � x2
(x � x1)

Denote by x3 the position at which y(x) crosses the axis Ox .
This point is given by

x3 =
x2f (x1)� x1f (x2)

f (x1)� f (x2)
= x2 �

f (x2)

f (x2)� f (x1)
(x2 � x1)

If in the (x1, x2) interval, f (x) ⇡ y(x), then x3 is a good
approximation to the root r of f (x).
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Linear interpolation: Recurrence relation

With x3, there are three choices:
1 If f (x1) · f (x3) < 0 set x2 = x3

2 If f (x2) · f (x3) < 0 set x1 = x3

3 If f (x3) = 0 root has been
found

Recurence relation:

xn+2 = xn+1 �
f (xn+1)

f (xn+1)� f (xn)
(xn+1 � xn)
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Linear interpolation

REPEAT
SET x3 = x2 � f (x2) · x2�x1

f (x2)�f (x1)

IF f (x3) · f (x1) < 0
SET x2 = x3

ELSE
SET x1 = x3

ENDIF
UNTIL |f (x3)| < E
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Linear interpolation : Convergence

THEOREM: If ⇠ is the root of the equation f (x) = 0, and "n = xn � ⇠
is the error associated with the root estimate xn, the convergence rate
of the linear interpolation method is

"n+1 = k · "1.618
n

PROOF: From xn = ⇠ + "n, we have that

f (xn) = f (⇠ + "n) = f (⇠) + "nf 0 (⇠) +
"2

n

2
f 00 (⇠)

= "nf 0 (⇠) +
"2

n

2
f 00 (⇠)

then from the recurrence relation

xn+2 = xn+1 �
f (xn+1)

f (xn+1)� f (xn)
(xn+1 � xn)

one has that
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"n+2 = "n+1 �
"n+1f 0(⇠) + 1

2"
2
n+1f 00(⇠)

f 0(⇠)("n+1 � "n) +
1
2 f 00(⇠)("2

n+1 � "2
n)

· ("n+1 � "n)

"n+2 = "n+1 �
"n+1f 0(⇠) + 1

2"
2
n+1f 00(⇠)

f 0(⇠) + 1
2 f 00(⇠)("n+1 + "n)

"n+2 = "n+1

"
1 �

f 0(⇠) + 1
2"n+1f 00(⇠)

f 0(⇠) + 1
2 f 00(⇠)("n+1 + "n)

#

"n+2 = "n+1

"
1
2"nf 00(⇠)

f 0(⇠) + 1
2 f 00(⇠)("n+1 + "n)

#

"n+2 ⇡ "n+1"n
1
2

f 00(⇠)
f 0(⇠)
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Let "n+1 = k "m
n , then

"n+2 = k "m
n+1 = km+1 "m2

n

"n+1"n = k "m+1
n

thus
"n+2 ⇡ "n+1"n

1
2

f 00(⇠)
f 0(⇠)

implies

km+1 "m2

n = k "m+1
n

f 00(⇠)
2f 0(⇠)

Therefore

km =
f 00(⇠)
2f 0(⇠)

m2 = m + 1 ) m = 1.618

"n+1 = k · "1.618
n
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Newton Raphson method

If in the neighborhood of the root r of the equation f (x) = 0 the 1st
and 2nd derivatives of f (x) are continuous, it is possible to develop a
root finding method which is faster than the bisection and linear
interpolation method.

Let xn+1 and xn be respectively the n + 1 and n root iterations of the
equation f (x) = 0 such that xn+1 = xn + �n with �n ⌧ 1.

Then:

f (xn+1) = f (xn + �n)

= f (xn) + �nf 0 (xn) +
�2

n

2
f 00 (xn) + · · ·

In the limit n ! 1, we have that f (xn+1) = 0, thus

0 = f (xn) + �nf 0(xn) ) �n = � f (xn)

f 0(xn)
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Newton Raphson method: Recurrence relation

Then

xn+1 = xn �
f (xn)

f 0(xn)

Notice problems when
f 0(xn) = 0
xn+2 = xn non-convergent
cylce

Recall linear interpolation
recurrence relation

xn+1 = xn � f (xn)


(xn � xn�1)

f (xn)� f (xn�1)

�
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Newton Raphson method : Convergence

If f (r) = 0 such that xn = r + "n, from the recurrence relation

r + "n+1 = r + "n �
f (r + "n)

f 0 (r + "n)

"n+1 = "n �
f (r) + "nf 0 (r) + 1

2"
2
nf 00 (r)

f 0 (r) + "nf 00 (r)

"n+1 = "n �
"nf 0 (r) + 1

2"
2
nf 00 (r)

f 0 (r) + "nf 00 (r)

"n+1

"n
= 1 �

f 0 (r) + 1
2"nf 00 (r)

f 0 (r) + "nf 00 (r)

"n+1

"n
=

1
2"nf 00 (r)

f 0 (r) + "nf 00 (r)
⇡ "n

1
2

f 00(r)
f 0(r)

we get that

"n+1 = � f 00 (r)
2f 0 (r)

· "2
n

That is, quadratic convergence
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Newton-Raphson

IF f 0(x) 6= 0
REPEAT

SET x = x � f (x)/f 0(x)
UNTIL |f (x)| < E

ENDIF
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Newton Halley method

Recall

f (xn+1) = f (xn + �n) = f (xn) + �nf 0 (xn) +
�2

n

2
f 00 (xn) + . . .

f (xn) + �n


f 0 (xn) +

�n

2
f 00 (xn)

�
= 0

�n = � f (xn)

f 0(xn) +
�n
2 f 00(xn)

Substitute the previous Newton Raphson result

�n ⇡ � f (xn)

f 0(xn)

in the denominator
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Then
�n = � f (xn)

f 0(xn)� f (xn)f 00(xn)
2 f 0(xn)

so

xn+1 = xn �
f (xn)

f 0(xn)� f (xn)f 00(xn)
2 f 0(xn)

xn+1 = xn �
2 f (xn)f 0(xn)

2 f 0(xn)f 0(xn)� f (xn)f 00(xn)

Notice that for f 00(xn) = 0 we recover that traditional Newton-Raphson
method.

Newton Halley’s methods achieves cubic convergence:

"n+1 = �
"

1
6

f 000 (⇠)
f 0 (⇠)

� 1
4

✓
f 00 (⇠)
f 0 (⇠)

◆2
#
· "3

n
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Newton-Halley

IF f 0(x) 6= 0 AND f 00(x) 6= 0
REPEAT

SET x = x � 2 f (x) f 0(x)/(2 f 0(x) f 0(x)� f (x) f 00(x))
UNTIL |f (x)| < E

ENDIF

Kokkotas, Laguna & Shoemaker Computational Physics



EXAMPLE: Use the Newton-Raphson and Newton-Halley method to
calculate square root of a number Q (here Q = 9).
Set f (x) = x2 � Q, then

xn+1 =
1
2

✓
xn +

Q
xn

◆
(Raphson) xn+1 =

x3
n + 3 xn Q
3 x2

n + Q
(Halley)

Newton Error Halley Error
x0=15 "0 = 12 x0=15 "0 = 12
x1=7.8 "1 = 4.8 x1=5.526 "1 = 2.5
x2=4.477 "2 = 1.477 x2=3.16024 "2 = 0.16
x3=3.2436 "3 = 0.243 x3=3.00011 "3 = 1.05 ⇥ 10�4

x4=3.0092 "4 = 9.15⇥ 10�3 x4=3.0000... "4 = 3.24 ⇥ 10�14
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Non-linear systems of equations

An example of two non-linear
equations is the following:

f (x , y) = ex � 3y � 1
g(x , y) = x2 + y2 � 4

f (x , y) = 0 and g(x , y) = 0 are two
curves on the xy plane.
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Newton Raphson method for 2 equations

Let’s assume that after n + 1 iterations the method converged to the
solution (xn+1, yn+1) i.e. f (xn+1, yn+1) ⇡ 0 and g(xn+1, yn+1) ⇡ 0. Then
if xn+1 = xn + "n and yn+1 = yn + �n, then

0 ⇡ f (xn+1, yn+1) = f (xn+"n, yn+�n) ⇡ f (xn, yn)+"n

✓
@f
@x

◆

n
+�n

✓
@f
@y

◆

n

0 ⇡ g(xn+1, yn+1) = g(xn+"n, yn+�n) ⇡ g(xn, yn)+"n

✓
@g
@x

◆

n
+�n

✓
@g
@y

◆

n

Solving for "n and �n

"n =
�f @g

@y + g @f
@y

@f
@x

@g
@y � @g

@x
@f
@y

and �n =
�g @f

@x + f @g
@x

@f
@x

@g
@y � @g

@x
@f
@y
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Since xn+1 = xn + "n and yn+1 = yn + �n, the recurrence relations are:

xn+1 = xn �
✓

f · gy � g · fy
fx · gy � gx · fy

◆

n

yn+1 = yn �
✓

g · fx � f · gx

fx · gy � gx · fy

◆

n

where fx = @f
@x
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