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Gauss Method

After N — 1 steps we get the the desired upper-triangular system:

an X1+ aiXe +ai3Xz + -+ ainxy = by
e el el = )
ag23)x3 +e 4+ aﬁx,\, = bgz)
ay v = by av
The Nth (last) equation above yields : ®¢ %\F’ Xll
by " (N—1)

XN = W fOI’ aNN 7é 0
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while the rest of the values can be calculated via the relation:

: N ;
BV = Y A
k=i+1

a(1—1)
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X = for al™"#£0
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@ The number of arithmetic operations needed is
(4N3 +9N2 —7N)/6.

@ If a matrix is transformed into an upper-triangular or
lower-triangular or diagonal form then the determinant is simply

N
detA =ayy-axn-as---an = Haii
i=1
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Pivoting
Notice that there is trouble when We Cow~ Pt {\'\{
i SV~ thet

. N . -
b’(/—1)7 > 35‘2_1))(’( l—‘- & 'avﬂw\

k=i+1
ai="

II

Xj =

The number aj; in the position (/, /) that is used to eliminate x; in rows
i+1,i4+2,...,Nis called the ith pivotal element and the ith row is
called the pivotal row.

If a(’) = 0, row / cannot be used to eliminate, the elements i |n column j

below the diagonal. It is neccesary to find a row j, where a 7é 0 and
Jj > i and then interchange row / and j so that a nonzekg plvot element
is obtained.

it Thio et acuml e o, sopecinllle Jange N
Hera ke &
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The Jacobi Method

Any system of N linear equations with N unknowns can be written in
the form:

f1 (X‘IaXZa -"7XN) =0
f2(x17X27 "'7XN) =0

fn(XhXZa -"aXN) = 0

One can always rewrite the system in the form x; = g; (x;); that is,

X1 = g1(X2,X3,...,XN)
Xo = Go(X1,X3,..., XN)
XN = 9n(X1, X2, .., XN_1)
or
N

b; 1
Xi=_—— ) ajX

aj  aj .

J=1,j#1
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Therefore, by giving N initial guesse$ x.° Ve create the
recurrence relation \ov-K o (
XD =g xRy ‘)Dg‘o\'m V\% ‘B)p

which will converge to the solution of the system if:

N
lail > > |ay| (Diagonal dominat)
=1, #
independent on the choice of the initial values x1(°), X2(0)7 ey x,(\?).
The recurrence relation can be written in a matrix form as:

_ - k
x*+) —p-p —D"Cx® now U |
X + X.I ’-.L
where A = D + C with D = diag(A) and C all the rest.
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Consider the following example

dx—-y+z =7
4x -8y+z = -21
—2x+y+5z = 15

with solutions x = 2, y = 4, z = 3. Construct the recurrence
relationships

XKD = (7 4y 2Ky /4
yED = (21 4 4x%) 4 20y /8
2K = (15 4 2xK) — y(W)y /5

Starting with (1,2,2), one gets

(1,2,2) —(1.75,3.375,3) — (1.844,3.875,3.025)

— (1.963,3.925,2.963) — (1.991,3.977,3.0) — (1.994,3.995,3.001) — ---

l.e. with 5 iterations we reached the solution with 3 digits accuracy.
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Gauss - Seidel Method

Recall the Jacobi method MD‘FC__ Cg{\.cl‘vﬂ%: W\
N
A 1(b > “) Ooveuby X" ok by s

=1 i
VL" (?cou ‘ _HM. JP—'-'J"
o With (x1(°),x2(0),x3(0), ....,x,(\,o)), W WWH{A"“'

N
) 1 0
X. = —|b ai X;
! a ( 1; A )

@ Next with (xf”,xz(o),xéo), ~~-7X/(VO))1

ano

N
1
X2(2) = —~ (b2_321 X(1)—Zaij/(0))
=3

@ Next with (xf”,xé”,xéo), ...7x,(\,°)), and so on.
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Recurrence relation:

N
k) _ 1 (K)
X = — | b - ax;
1 ar ! /=Zz V7
(k+1) 1 k1) O (k)
+1 _ b _ +1 _ )
X2 = b2 — az1x 12:; ) X;
1 i—1 N
(= e - 3 e
! j=1 j=i+
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The method will converge if:

N D
ail > Y |al L

j=1, 0
This procedure in a “matrix form” is:
Xt =Dt B — Lx*D - ux®)]

where
A= L+ D + U

lower  diagonal  upper
The matrix L has the elements of below the diagonal A, the matrix D

only the diagonal elements of A and finally the matrix U the elements
of matrix A over the diagonal.
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The recurrence relation for the previous example becomes in this

case
e 74y _ 20
4
Yt 21 + 4xkt1) 4 z(K)
8
Jken _ 154 2x(kt1) (k1)

5

leading to the following sequence of approximate solutions:

(1,2,2) — (1.75,3.75,2,95)
— (1.95,3.97,2.99)
— (1.996,3.996,2.999)

i.e. here we need only 3 iterations to arrive to the same accuracy of
solutions as with Jacobi’s method which needed 5 iterations.
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