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Gauss Method
After N � 1 steps we get the the desired upper-triangular system:
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The Nth (last) equation above yields :
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while the rest of the values can be calculated via the relation:
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The number of arithmetic operations needed is
(4N

3 + 9N

2 � 7N)/6.
If a matrix is transformed into an upper-triangular or
lower-triangular or diagonal form then the determinant is simply

det A = a11 · a22 · a33 · · · a
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Pivoting

Notice that there is trouble when a
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= 0
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The number a

ii

in the position (i , i) that is used to eliminate x

i

in rows
i + 1, i + 2, ... ,N is called the i th pivotal element and the i th row is
called the pivotal row.

If a

(i)
ii

= 0, row i cannot be used to eliminate, the elements in column i

below the diagonal. It is neccesary to find a row j , where a

(i)
ji

6= 0 and
j > i and then interchange row i and j so that a nonzero pivot element
is obtained.
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The Jacobi Method
Any system of N linear equations with N unknowns can be written in
the form:
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One can always rewrite the system in the form x
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Therefore, by giving N initial guesses x

(0)
1 , x (0)

2 , . . . , x (0)
N

, we create the
recurrence relation
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which will converge to the solution of the system if:
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independent on the choice of the initial values x

(0)
1 , x (0)

2 , . . . , x (0)
N

.
The recurrence relation can be written in a matrix form as:
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where A = D + C with D = diag(A) and C all the rest.
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Consider the following example

4x � y + z = 7
4x � 8y + z = �21

�2x + y + 5z = 15

with solutions x = 2, y = 4, z = 3. Construct the recurrence
relationships

x

(k+1) = (7 + y

(k) � z

(k))/4
y

(k+1) = (21 + 4x

(k) + z

(k))/8
z

(k+1) = (15 + 2x

(k) � y

(k))/5

Starting with (1, 2, 2), one gets

(1, 2, 2) ! (1.75, 3.375, 3) ! (1.844, 3.875, 3.025)
! (1.963, 3.925, 2.963) ! (1.991, 3.977, 3.0) ! (1.994, 3.995, 3.001) ! · · ·

I.e. with 5 iterations we reached the solution with 3 digits accuracy.
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Gauss - Seidel Method
Recall the Jacobi method
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Recurrence relation:
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The method will converge if:
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This procedure in a “matrix form” is:
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where
A =

L
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+
D
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upper

The matrix L has the elements of below the diagonal A, the matrix D

only the diagonal elements of A and finally the matrix U the elements
of matrix A over the diagonal.
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The recurrence relation for the previous example becomes in this
case
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leading to the following sequence of approximate solutions:

(1, 2, 2) ! (1.75, 3.75, 2, 95)
! (1.95, 3.97, 2.99)
! (1.996, 3.996, 2.999)

i.e. here we need only 3 iterations to arrive to the same accuracy of
solutions as with Jacobi’s method which needed 5 iterations.
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