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Introduction

@ In many cases, a function f(x) is only known at a set of points
{X1, X2, ..., Xy}, and we are interested estimating its value at an
arbitrary point.

@ Estimating f(x) with x € [x1, xy] is called interpolation.
@ Estimating f(x) with x ¢ [xy, xu] is called extrapolation.

y = p(x)

- N W s ?
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Polynomial Approximations

Polynomial functions are the most popular. Rational and
trigonometric functions are also used quite frequently.
We will study the following methods for polynomial approximations:
@ Lagrange’s Polynomial
@ Hermite Polynomial
@ Taylor Polynomial
@ Cubic Splines
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Lagrange Polynomial

Consider the following data:

X0 Xq Xo X3
X 3.2 2.7 1.0 4.8
f(x) | 22.0 [ 17.8 | 142 | 38.3
fo fi fo f3

@ A possible interpolating polynomial is :
P3(x) = ax® + bx? + cx + d (i.e. a 3th order polynomial).

@ This leads to 4 equations for the 4 unknown coefficients.
@ The solutions are a = —0.5275, b = 6.4952, c = —16.117,

d = 24.3499
@ Thus

P3(x) = —0.5275x3 + 6.4952x> — 16.117x + 24.3499
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Lagrange Polynomial

@ For a large number of points, this procedure could be quite
laborious.

@ Given a set of n+ 1 points {x;, fi}i—o
direct way to find the polynomial

., Lagrange developed a

Pn(X) = foLo(X) + fiL4 (X) + ...+ fnLn(X) = if,L,(X)
i=0

where L;(x) are the Lagrange coefficient polynomials
@ The coefficients are given by

(X = X0)(X = X1)-..(X = Xj—1)(X = Xj11)...(X — Xn)
(% = X0) (X = X1)--(% = X—1)(Xj = Xj-1)---(Xj = Xn)

n
= JI3=2 with k#j

Xi — X|
k=0 " k

Li(x)
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@ Notice 0 it jk
, _ s _ mJ
L/(Xk)_ /k—{ 1 if j:k
where Jj is Kronecker’s symbol.
@ Therefore,

n n

Pa(x) = > fiLi(x) =Y _ fid5 = f(x))

=0 i=0
@ The error when using Lagrange interpolation is:

()

En(x) = f(X) = Pa(X) = (X — X0)(X — X1)....(x — x,,)m

where £ € [xo, Xn]

@ Notice that Lagrange polynomial applies to both evenly and
unevenly spaced points.
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Lagrange Polynomial Formula Derivation

Consider the case of three points.

fxi) = f(x)+(q—x)Ff(x)+ %(x1 — X2 (X)) +...
f(xo) = Ff(X)+ (X —x)F(x)+ %(Xg X2 (X)+...
f(x3) = f(x)+(x3—x)Ff(x)+ %(Xs —XP2fF(X)+...

Is is reasonable to think that f(x) ~ p(x) and f'(x) = p’(x). Thus
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Lagrange Polynomial Formula Derivation

2 Al

fx) = PO+ 06— x) P (X) + 506 — x)2p"(x)

fxe) = p(x)+ (xe—x)p'(x)+ 5(x2 — x)? p"(x)

fxs) = pOx)+ (66— x)P/(x) + 506 = x)?p"(x)

We have a system of three equations for three unknowns

(p(x), p'(x),p"(x)). Solving for p(x) one gets the desired answer.
Notice that one can also get the expression for the derivatives.
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Lagrange Polynomial : Example

Find the Lagrange polynomial that
approximates the function y = cos(mx) o
using the following data.

.——f(x)=cos(nx)

P(X)=-2x+1  °
N (X)=-2x

x; | 0 |05]|1
fi |1 ]0.0f-1

f(x), P(x)

The Lagrange coeffiecient polynomials
are: x
(X —Xx2)(x—x3) (x—05)(x—1

B ) )(x —1)

B = e T — k) - (0-08)0—1) 2 ]
L ex)xox) (X -0)(x—1)

L) = (-]~ 05— 0)05-1) P+
C —x)(x—x)  (x—0)(x—05)

balx) = (x:;—xj)(Xs—Xz) (1-0)(1-05) et

thus

P(x) = (1)(2x? —3x+1)+(0.0)(—4x%+4x)+(—1)(2x®—x) = —2x + 1



The error from using P(x) = —2x + 1 will be:

(n+1)
B0 = ()0 x) (x m) )
(3)
- (X‘Xo)(X—XO(X—Xz)f(sg!g)

x(x—=05)(x—-1) 30

for example E(x = 0.25) < 0.24.
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Hermite Polynomial Interpolation

This type of interpolation is very useful when in addition to the values
of f(x) one also has its derivative f'(x)

Pa(x) = S A+ Bi(x)f,
i=1 i=1

where

Aix) = [1—2(x — x;)Li(x)] - [Li()P
(x = x7) - [Li(OP

I
x
|

and L;(x) are the Lagrange coefficients.
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Hermite Polynomial Interpolation Example

Kol xe | Yk | Y
0 0 0 0
1 4 2 0

The Lagrange coefficients are:

R = = e I =R

L) = X01X1:7:IZ LQ(X):mle:%
Thus
A(x) = [1—2~L6(X—Xg)]-Lg—{1—2~<—1>(x_0)}.<x44)2
A(x) = [1_2.L6(X_x1)].g:[1_2.;@_4)].(g):(s_g).(g)?
Bo(x) = (xo>~(X;4)2x(X;4)2 Bix) = (x—4)- (%)
And ,

P(x) = (6= x)35-
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Taylor Polynomial Interpolation

Instead of finding a polynomial P(x) such that P(x) = f(x) at N
points (Lagrange) or that both P(x) = f(x) and P'(x) = f'(x) at N
points (Hermite), Taylor polynomial interpolation consists of, for a
given value xo, finding a function P(x) that agrees up to the Nth
derivative at xp. That is:

P(i)(XO) = f(i)(Xo) for i= 0713"'? n

and the Taylor polynomial is given by

N

Pn(x) = Zfi. (x — x)

i=0

The error is given by

N+1 fINFD) (X0)

Enlx) = (=20 )
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Taylor Polynomial Interpolation Example

Find out how many Taylor expansion terms are required for 13-digit
approximation of e = 2.718281828459....

Let y(x) = e*. All the derivatives are y)(x) = e*. Thus at x = 0, one
has y()(x = 0) = 1. Therefore

n

i n-+1
P,(x) = Z% and E,(x) = (nx+ i

Evaluate at x = 1

n 1 1
Pn(1) = > i and E,(1) = G

and you will find that you need n = 15 and Ey5 = 1.433 x 10~ 13
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Interpolation with Cubic Splines

In some cases the typical polynomial

approximation cannot smoothly fit certain ,‘
sets of data. For instance, consider the q1
function g
0 —1<x<-02 _h
fx)=¢ 1-5x] -02<x<02
0 02<x<1.0
We can easily verify that we cannot fit the s W B

above data with any polynomial degree!
P(x) =1 —26x2 + 25x*
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Spline Fitting

General Idea:
@ Consider the tabulated function y; = y(x;) with i =0, ..., N.
@ Split the domain [xo, xn] into N intervals [x;, x;1] with
i=0,....,N—1.
@ For each interval construct a cubic polynomial or spline such that
neighboring splines have the same slope and curvature at their

joining point.
@ That is, the essential idea is to fit a piecewise function of the form
So(x) if X <x<xq
s1(x) if x<x<x
S(x) = _
sn—1(x) it xny—1 < x < Xn
where

si(x) = ai(x —x)>+ bi(x — x;)? + ci(x — x;) + d;

si(x) = Bailx—x)?+2bi(x—x)+c

S,/-/(X) = 6a(x—x)+2b
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Cubic Spline Interpolation Properties

@ S(x) interpolates all data points. That is, S(x;) = y;. Since
X; € [Xi, Xi11], one has that

yi = si(xi)
= ai(xi — x)° + bi(x — )% + ci(x; — x;) + 0
= d
@ S(x) is continuous on the interval [xo, xn], thus s;(x;) = si_1(X;)
with
S,'(X,') = d,‘
sic1(%) = @106 —xi1)* + b1 (X — Xi—1)? + Gi1(Xi — Xi—1) + i1

= ai_1h’ + b1+ ci_1hi_1 + di_4
where hi_y = X; — x;_1. Therefore

di=ai_1h{ +b_1h?, +ci_1hi_1+d4
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Cubic Spline Interpolation Properties

@ S'(x) is continuous on the interval [xo, xn], thus sj(x;) = sj_;(X;)

with
S,/-(X,') = G
sl y(x) = Bai_1(xi—xi_1)>+2bi_1(X; — Xi_1) + Ci_1
= 36,'_1/7,-2_1 +2bi_1hi_1 + Ci_1
Therefore

ci=3a_1 h,-2_1 +2bj_1hi_1 + ¢ci_4
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Cubic Spline Interpolation Properties

@ S”(x) is continuous on the interval [xo, Xn], thus s;(x;) = s/’ ;(x;)

with
s'(x) = 2b;
si (X)) = 6,ai—1(Xi — Xi—1) + 2 bj_1
= 6a_1hi_1 +2bj_q
Therefore

2bj=6a;_1hi_1 +2bj_4
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In Summary

s/(xi) = s’ {(xi) = b;i =3ai_1hi_1 + bj_
si(xi) =si_4(xi) = ¢ =3a_1h? , +2bi_1hi_1 + ¢i_1

si(x)) = si—1(x) = di=a_1h’ ,+bi_1h? , +ci_1hi_1 + di_4
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Let’s define M; = s/'(x;). Then from s/'(x;) = 2 b; and
2bj.1 = 6 a;h; + 2 b;, we have that

M. Miss — M:
b=, a-= I+(13h. :
1

Also, from
si(x) = ai(x — x)° + bi(x — x)? + ci(x — x;) + g
and s;(x;) = yi, Si(Xi+1) = yiy1 and , we have that
M.+ — M: M:
Yig1 = %Ilh? + ?Ihlz + cihi + i
Therefore

h.
Ci = y'+1h Yi 6’(2Mi+Mi+1) and d,=y;
1
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Recall the condition that the slopes of the two cubics joining at (x;, y;)
are the same. That is s/(x;) = s;_;(x;), which yielded

ci=3a_1h? { +2bj_1hi_1 + Ci_

Substitution of a, b, ¢ and d yields:

Yier = ¥i _ 2hiMi+ hiMiy o (M= My
h; 6 6h;_4 =
M1, Yi— Yi-1 2hi 1M1 + hi_1M;
+2?h1_1 + h,‘_1 - 6

and by simplifying we get:

hi—iMi—y +2(hi—1 + hi)) Mi + hiM;; 1 = 6 (y,'+1 IR (. yM)

h; hi_+
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@ If we have n+ 1 points, the relationship

hi—aMi—1 + 2 (hi—1 + h;) M; + hiM; 1 = 6 <yi+1 Y y,-1)

h; hi_+
can be applied to the n — 1 internal points.

@ Thus we create a system of n— 1 equations for the n+ 1
unknown M,.

@ This system can be solved if we specify the values of My and M,,.
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The system of n — 1 equations with n -+ 1 unknown will be written as:

....... Mo
hy  2hg +hy) by My
hy 2(hy + hp)  hy My
hy 2(hy + hg)  hg :
.............. n_2
hp—2 (hp—2 +hp—1)  hp_q Mp_+
Mn

}/2 Yi _ yi—%

M o
Ya—Yo _ Yo—)1
— 6 h2 h1
yn Yn—1 Yn—W —Yn—2
n—1 hn_2

Recall

hi—iMi_1 +2 (hi—y + hj) Mi + hiM,1 = 6 (yiﬂh._ vy ; }/1/_1 )
] 1—
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From the solution of this linear systems we get the coefficients a;, b;,
¢; and d; via the relations:

_ Mg =M
a = e
M;
b o= 5
o = YTV 2hiM; + hiM; 4
: h; 6
di = i
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Let’s define
}’Zh )4l }/1h Yo

o Ya—Yo _ Yo—W1
Y=6| "=  h
Yn—Yn—1 _ Yn—1—Yn—2
hn—1 hn—2
and
M,
Mo
M= :
Mn—2
Mn—1
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Take, My = 0 and M, = 0. This will lead to the solution of the
(n—1) x (n—1) linear system:

HM=Y
where
2(ho + h) M
hy 2(h1 + h2) ho
H= ho 2(h2 + h3) hs
hn—2 2(hp—2 + hp_1)
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Choice Il

Take, My = My and M, = M,_+. This will lead to the solution of the
(n—1) x (n—1) linear system:

HM=Y
where
3hy +2hy hy
hy 2(h1 —+ hg) ho

H= ho 2(ho+ hs) hs

hn—o 2h,_2+ 3hy_4
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Choice Il

Use linear extrapolation

My —My Mo — M (ho + hy)My — hoM>
= M =
ho R o hy
Mn - Mn71 _ Mn71 - Mn72 _ (hn72 + hn71)Mn71 - hn71 Mn72
= = M, =
hn—1 hn—» hn—2
Then
(ho+hi)(ho+2hy)  HE—H2
h1 h1
hy 2(hi+h2) ho
M= hy 2(ho + hs) hs
Ha_,—h (hn—1+hn_2)(hp—_142hy_2)
hn,z hn—2
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Choice IV

Force the slopes at the end points to assume certain values. If
f'(xo) = Aand f'(x,) = B then

2hoMy + My = 6<y1;yoA)
0

hp_1Mp_4 +2h,M, = 6 (B— }’nYn—1)

hn71
Then
2hy  hy
ho 2(h0 + h1) hy

H= h 2(h + h2) he

hn72 2hn71
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Interpolation with Cubic Splines : Example

Fit a cubic spline in the data (y = x® — 8):

X 0 1 2 3 4
y -8 -7 0 19 56

e Conditionl: My =0, M, =0

4 10 M; 36 M; = 6.4285
1 4 1 ]| ML |=| 72 = M, =10.2857
01 4 Ms 108 M; = 24.4285

e Condition Il : My = My, My = M;
s 10 M1 36 M1 = Mo =438
1 4 1 A M =] 72 = M=12
01 s Ms 108 My =192 = M,
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e Condition Il :

1 4 A M = 72 = M =12 M; =18
0 0 6 Mz 108 M, =24

e Condition IV ;
2 1 000 My 6 My=0
141 00 M, 36 M; =6
01 410 Mo = 72 M, =12
0 01 4 1 My 108 Ms; =18
0 00 1 2 M, 66 M, =24
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Tri-diagonal Matrix

The system of equations in the cubic spline fitting method has the
following form:

by ¢ 0 . X1 a;

a b ¢ ... Xo fo )

0 as b3 - X3 d3
bn_z Cn—2 O XN—2 dn—2
an—1 bn—1 Cn-1 XN—1 dn—1
0 an bN XN dN

The matrix has the so-called tri-diagonal form. That is, each
equations has the form

aiXi_1+bixi+ cixiy1 =d;
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Method to Solve a Tri-diagonal System

Redefine
c .
B =1
/
CI = C .
il P— J—
b= 4 i=2,3,...,n—1
and
d. P
B =1
dil - d—d_,a
i—0i_q 4 H
b= & i=2,3,...,n
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With these new coefficients the systems takes the form

1 C4 0 X1 d1/

0 1 Cé X2 dé

00 1 X3 d
1 C;\lf2 0 XN—2 dll\lf2
01 ¢y, XN_1 di_,
00 1 XN dll\l

The systems can be solved using back substitution
Xp=d), i=n

X = d] — ] X1 i=n—-1n-2n-3,...,1

Kokkotas, Laguna & Shoemaker Computational Physics



Chi-Square Fitting

@ Consider a set of N data points
{Xi, ¥i}i=o,...n—1 With standard

deviations o;. 3
@ The objective is to find a model Ve
function f(x; 8) with 8 = {fo, ..., fu}

N

a set of M adjustable parameters. -7

@ Such that 1 /
N—1 2\ 2 .
3 i — F(X;; T/

X2 = <y O'(I' ﬁ)> o Lo,

i=0 -1 .,::./.:
is a minumum. 2 -1 0 1 2
@ Notice that r; = y; — f(x;; 3) are the
residuals.
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Fitting Data to a Straight Line

@ Consider the case f(x; 3) = a+ bx.
Therefore

N
yi—a-— bx,) o
=

@ To minimize x? with respect to a and
b, we need to solve

o - ¢ _ N yi—a-bx

oa Py o'l.2 ET T 10 20 30 40 50
0 - N _ ,Nxli-a-bx)

ob i—0 of
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Define

N-T N—1 X N—1.%
S= o Sy = s S, = e
i=0 "1 i=0 "1 i=0 "1
B N—1 X,'2 B N—1 Xi Vi
Sxx = ? Sxy = Z 2
=0 1 i=0 !
Then
aS+bS, = S,
aSy=bSx = Sy
Finally

A = S8, 8

S« S, — Sx Sy
A

SSy - 5S,
A
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Propagation of errors

with
% o Sxx - Sx Xi
8y,- o 0’,»2 A
ab  Sx— S
8}/,‘ n 0’,-2 A
Thus
(72 = Su/A
Ui = S/A
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Variance, Covariance and Correlation

Consider the case in which ; = 1. Then

]
S=Y =N S=> S =Nx §=3 L =Ny
=0 i =0 i =0 i
N_1X-2 - N1Xy
SXXEZ;'?:N)@ y = ;2’:N7

I

i=0 "1 i=
where the over line denotes average. Thus

A = SSu—S2=N?x2—N2%* = N?(x2 — X°)
S Sy —Sx Sy _ 77 XXy
a =
A X2 —x°
A B F X2
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Notice

2y XXy _ Xy -X'y+X°y-XXy
a = — =
2 _ %2 X2 _x°
(XY —-Xy\ _ _
= y—-X 2_XZ)_y—xb
XY =Xy
b = 7
where
Var[x] = x2—X° Variance
Cov[x,y] = xy—Xy Covariance
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Finally, from y = a+ b x with

a = y—-xb
b - T7
x2 — X?

we have that

where

— Correlation
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