Computational Physics

Interpolation, Extrapolation & Polynomial Approximation

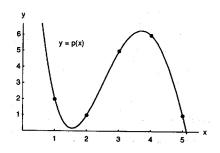
Lectures based on course notes by Pablo Laguna and Kostas Kokkotas

revamped by Deirdre Shoemaker

Spring 2014

Introduction

- In many cases, a function f(x) is only known at a set of points $\{x_1, x_2, ..., x_N\}$, and we are interested estimating its value at an arbitrary point.
- Estimating f(x) with $x \in [x_1, x_N]$ is called interpolation.
- Estimating f(x) with $x \notin [x_1, x_N]$ is called extrapolation.



Polynomial Approximations

Polynomial functions are the most popular. Rational and trigonometric functions are also used quite frequently.

We will study the following methods for polynomial approximations:

- Lagrange's Polynomial
- Hermite Polynomial
- Taylor Polynomial
- Cubic Splines

Lagrange Polynomial

Consider the following data:

	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
X	3.2	2.7	1.0	4.8
f(x)	22.0	17.8	14.2	38.3
	f_0	<i>f</i> ₁	f_2	<i>f</i> ₃

- A possible interpolating polynomial is : $P_3(x) = ax^3 + bx^2 + cx + d$ (i.e. a 3th order polynomial).
- This leads to 4 equations for the 4 unknown coefficients.
- The solutions are a = -0.5275, b = 6.4952, c = -16.117, d = 24.3499
- Thus

$$P_3(x) = -0.5275x^3 + 6.4952x^2 - 16.117x + 24.3499$$

Lagrange Polynomial

- For a large number of points, this procedure could be quite laborious.
- Given a set of n+1 points $\{x_i, f_i\}_{i=0,...,n}$, Lagrange developed a direct way to find the polynomial

$$P_n(x) = f_0 L_0(x) + f_1 L_1(x) + \dots + f_n L_n(x) = \sum_{i=0}^n f_i L_i(x)$$

where $L_i(x)$ are the Lagrange coefficient polynomials

The coefficients are given by

$$L_{j}(x) = \frac{(x - x_{0})(x - x_{1})...(x - x_{j-1})(x - x_{j+1})...(x - x_{n})}{(x_{j} - x_{0})(x_{j} - x_{1})...(x_{j} - x_{j-1})(x_{j} - x_{j+1})...(x_{j} - x_{n})}$$

$$= \prod_{k=0}^{n} \frac{x - x_{k}}{x_{j} - x_{k}} \quad \text{with} \quad k \neq j$$

Notice

$$L_j(x_k) = \delta_{jk} = \begin{cases} 0 & \text{if} \quad j \neq k \\ 1 & \text{if} \quad j = k \end{cases}$$

where δ_{ik} is Kronecker's symbol.

Therefore,

$$P_n(x_j) = \sum_{i=0}^n f_i L_i(x_j) = \sum_{i=0}^n f_i \delta_{ij} = f(x_j)$$

The error when using Lagrange interpolation is:

$$E_n(x) = f(x) - P_n(x) = (x - x_0)(x - x_1)....(x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

where $\xi \in [x_0, x_N]$

 Notice that Lagrange polynomial applies to both evenly and unevenly spaced points.

Lagrange Polynomial Formula Derivation

Consider the case of three points.

$$f(x_1) = f(x) + (x_1 - x) f'(x) + \frac{1}{2} (x_1 - x)^2 f''(x) + \dots$$

$$f(x_2) = f(x) + (x_2 - x) f'(x) + \frac{1}{2} (x_2 - x)^2 f''(x) + \dots$$

$$f(x_3) = f(x) + (x_3 - x) f'(x) + \frac{1}{2} (x_3 - x)^2 f''(x) + \dots$$

Is is reasonable to think that $f(x) \approx p(x)$ and $f'(x) \approx p'(x)$. Thus

Lagrange Polynomial Formula Derivation

$$f(x_1) = p(x) + (x_1 - x) p'(x) + \frac{1}{2} (x_1 - x)^2 p''(x)$$

$$f(x_2) = p(x) + (x_2 - x) p'(x) + \frac{1}{2} (x_2 - x)^2 p''(x)$$

$$f(x_3) = p(x) + (x_3 - x) p'(x) + \frac{1}{2} (x_3 - x)^2 p''(x)$$

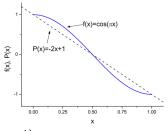
We have a system of three equations for three unknowns (p(x), p'(x), p''(x)). Solving for p(x) one gets the desired answer. Notice that one can also get the expression for the derivatives.

Lagrange Polynomial: Example

Find the Lagrange polynomial that approximates the function $y = \cos(\pi x)$ using the following data.

Xi	0	0.5	1
fi	1	0.0	-1

The Lagrange coefficient polynomials are:



$$L_{1}(x) = \frac{(x - x_{2})(x - x_{3})}{(x_{1} - x_{2})(x_{1} - x_{3})} = \frac{(x - 0.5)(x - 1)}{(0 - 0.5)(0 - 1)} = 2x^{2} - 3x + 1,$$

$$L_{2}(x) = \frac{(x - x_{1})(x - x_{3})}{(x_{2} - x_{1})(x_{2} - x_{3})} = \frac{(x - 0)(x - 1)}{(0.5 - 0)(0.5 - 1)} = -4x^{2} + 4x$$

$$L_{3}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{3} - x_{1})(x_{3} - x_{2})} = \frac{(x - 0)(x - 0.5)}{(1 - 0)(1 - 0.5)} = 2x^{2} - x$$

thus

$$P(x) = (1)(2x^2 - 3x + 1) + (0.0)(-4x^2 + 4x) + (-1)(2x^2 - x) = -2x + 1$$

The error from using P(x) = -2x + 1 will be:

$$E(x) = (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

$$= (x - x_0)(x - x_1)(x - x_2) \frac{f^{(3)}(\xi)}{(3)!}$$

$$= x(x - 0.5)(x - 1) \frac{\pi^3 \sin(\pi \xi)}{3!}$$

for example $E(x = 0.25) \le 0.24$.

Hermite Polynomial Interpolation

This type of interpolation is very useful when in addition to the values of f(x) one also has its derivative f'(x)

$$P_n(x) = \sum_{i=1}^n A_i(x) f_i + \sum_{i=1}^n B_i(x) f_i'$$

where

$$A_{i}(x) = [1 - 2(x - x_{i})L'_{i}(x_{i})] \cdot [L_{i}(x)]^{2}$$

$$B_{i}(x) = (x - x_{i}) \cdot [L_{i}(x)]^{2}$$

and $L_i(x)$ are the Lagrange coefficients.

Hermite Polynomial Interpolation Example

k	X _k	y _k	y'_k
0	0	0	0
1	4	2	0

The Lagrange coefficients are:

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} = \frac{x - 4}{0 - 4} = -\frac{x - 4}{4} \quad L_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{x}{4}$$

$$L'_0(x) = \frac{1}{x_0 - x_1} = -\frac{1}{4} \quad L'_1(x) = \frac{1}{x_1 - x_0} = \frac{1}{4}$$

Thus

$$\begin{array}{lcl} A_{0}(x) & = & \left[1-2\cdot L_{0}'(x-x_{0})\right]\cdot L_{0}^{2} = \left[1-2\cdot\left(-\frac{1}{4}\right)(x-0)\right]\cdot\left(\frac{x-4}{4}\right)^{2} \\ A_{1}(x) & = & \left[1-2\cdot L_{0}'(x-x_{1})\right]\cdot L_{1}^{2} = \left[1-2\cdot\frac{1}{4}(x-4)\right]\cdot\left(\frac{x}{4}\right)^{2} = \left(3-\frac{x}{2}\right)\cdot\left(\frac{x}{4}\right)^{2} \\ B_{0}(x) & = & (x-0)\cdot\left(\frac{x-4}{4}\right)^{2} = x\left(\frac{x-4}{4}\right)^{2} \quad B_{1}(x) = (x-4)\cdot\left(\frac{x}{4}\right)^{2} \end{array}$$
 And

$$P(x) = (6 - x) \frac{x^2}{16}.$$

Taylor Polynomial Interpolation

Instead of finding a polynomial P(x) such that P(x) = f(x) at N points (Lagrange) or that both P(x) = f(x) and P'(x) = f'(x) at N points (Hermite), Taylor polynomial interpolation consists of, for a given value x_0 , finding a function P(x) that agrees up to the Nth derivative at x_0 . That is:

$$P^{(i)}(x_0) = f^{(i)}(x_0)$$
 for $i = 0, 1, ..., n$

and the Taylor polynomial is given by

$$P_N(x) = \sum_{i=0}^N \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

The error is given by

$$E_N(x) = (x - x_0)^{N+1} \frac{f^{(N+1)}(x_0)}{(N+1)!}$$

Taylor Polynomial Interpolation Example

Find out how many Taylor expansion terms are required for 13-digit approximation of e = 2.718281828459...

Let $y(x) = e^x$. All the derivatives are $y^{(i)}(x) = e^x$. Thus at x = 0, one has $y^{(i)}(x = 0) = 1$. Therefore

$$P_n(x) = \sum_{i=0}^n \frac{x^i}{i!}$$
 and $E_n(x) = \frac{x^{n+1}}{(n+1)!}$

Evaluate at x = 1

$$P_n(1) = \sum_{i=0}^n \frac{1}{i!}$$
 and $E_n(1) = \frac{1}{(n+1)!}$

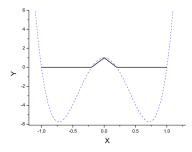
and you will find that you need n = 15 and $E_{15} = 1.433 \times 10^{-13}$

Interpolation with Cubic Splines

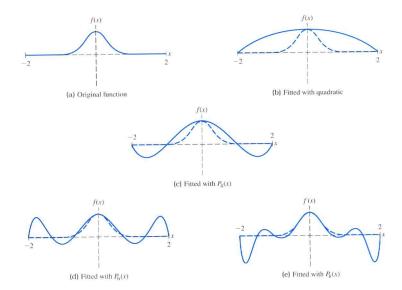
In some cases the typical polynomial approximation cannot smoothly fit certain sets of data. For instance, consider the function

$$f(x) = \begin{cases} 0 & -1 \le x \le -0.2 \\ 1 - 5|x| & -0.2 < x < 0.2 \\ 0 & 0.2 \le x \le 1.0 \end{cases}$$

We can easily verify that we cannot fit the above data with any polynomial degree!



$$P(x) = 1 - 26x^2 + 25x^4$$



Spline Fitting

General Idea:

- Consider the tabulated function $y_i = y(x_i)$ with i = 0, ..., N.
- Split the domain $[x_0, x_N]$ into N intervals $[x_i, x_{i+1}]$ with i = 0, ..., N 1.
- For each interval construct a <u>cubic polynomial</u> or <u>spline</u> such that neighboring splines have the same <u>slope</u> and <u>curvature</u> at their joining point.
- That is, the essential idea is to fit a piecewise function of the form

$$S(x) = \begin{cases} s_0(x) & \text{if } x_0 \le x \le x_1 \\ s_1(x) & \text{if } x_1 \le x \le x_2 \\ & \vdots \\ s_{N-1}(x) & \text{if } x_{N-1} \le x \le x_N \end{cases}$$

where

$$s_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$$

$$s'_i(x) = 3 a_i(x - x_i)^2 + 2 b_i(x - x_i) + c_i$$

$$s''_i(x) = 6 a_i(x - x_i) + 2 b_i$$

Cubic Spline Interpolation Properties

• S(x) interpolates all data points. That is, $S(x_i) = y_i$. Since $x_i \in [x_i, x_{i+1}]$, one has that

$$y_i = s_i(x_i)$$

= $a_i(x_i - x_i)^3 + b_i(x_i - x_i)^2 + c_i(x_i - x_i) + d_i$
= d_i

• S(x) is continuous on the interval $[x_0, x_N]$, thus $s_i(x_i) = s_{i-1}(x_i)$ with

$$s_{i}(x_{i}) = d_{i}$$

$$s_{i-1}(x_{i}) = a_{i-1}(x_{i} - x_{i-1})^{3} + b_{i-1}(x_{i} - x_{i-1})^{2} + c_{i-1}(x_{i} - x_{i-1}) + d_{i-1}$$

$$= a_{i-1}h_{i-1}^{3} + b_{i-1}h_{i-1}^{2} + c_{i-1}h_{i-1} + d_{i-1}$$

where $h_{i-1} = x_i - x_{i-1}$. Therefore

$$d_i = a_{i-1}h_{i-1}^3 + b_{i-1}h_{i-1}^2 + c_{i-1}h_{i-1} + d_{i-1}$$

Cubic Spline Interpolation Properties

• S'(x) is continuous on the interval $[x_0, x_N]$, thus $s'_i(x_i) = s'_{i-1}(x_i)$ with

$$s'_{i}(x_{i}) = c_{i}$$

$$s'_{i-1}(x_{i}) = 3 a_{i-1}(x_{i} - x_{i-1})^{2} + 2 b_{i-1}(x_{i} - x_{i-1}) + c_{i-1}$$

$$= 3 a_{i-1}h_{i-1}^{2} + 2 b_{i-1}h_{i-1} + c_{i-1}$$

Therefore

$$c_i = 3 a_{i-1} h_{i-1}^2 + 2 b_{i-1} h_{i-1} + c_{i-1}$$

Cubic Spline Interpolation Properties

• S''(x) is continuous on the interval $[x_0, x_N]$, thus $s_i''(x_i) = s_{i-1}''(x_i)$ with

$$s_i''(x_i) = 2 b_i$$

 $s_{i-1}''(x_i) = 6, a_{i-1}(x_i - x_{i-1}) + 2 b_{i-1}$
 $= 6 a_{i-1} h_{i-1} + 2 b_{i-1}$

Therefore

$$2b_i = 6a_{i-1}h_{i-1} + 2b_{i-1}$$

In Summary

$$s_i''(x_i) = s_{i-1}''(x_i) \Rightarrow b_i = 3 a_{i-1} h_{i-1} + b_{i-1}$$
 $s_i'(x_i) = s_{i-1}'(x_i) \Rightarrow c_i = 3 a_{i-1} h_{i-1}^2 + 2 b_{i-1} h_{i-1} + c_{i-1}$
 $s_i(x_i) = s_{i-1}(x_i) \Rightarrow d_i = a_{i-1} h_{i-1}^3 + b_{i-1} h_{i-1}^2 + c_{i-1} h_{i-1} + d_{i-1}$

Let's define $M_i \equiv s_i''(x_i)$. Then from $s_i''(x_i) = 2 b_i$ and $2 b_{i+1} = 6 a_i h_i + 2 b_i$, we have that

$$\mathbf{b}_i = \frac{M_i}{2}, \quad \mathbf{a}_i = \frac{M_{i+1} - M_i}{6h_i}$$

Also, from

$$s_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$$

and $s_i(x_i) = y_i, s_i(x_{i+1}) = y_{i+1}$ and , we have that

$$y_{i+1} = \frac{M_{i+1} - M_i}{6h_i}h_i^3 + \frac{M_i}{2}h_i^2 + c_ih_i + y_i$$

Therefore

$$c_i = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{6}(2M_i + M_{i+1})$$
 and $d_i = y_i$

Recall the condition that the slopes of the two cubics joining at (x_i, y_i) are the same. That is $s'_i(x_i) = s'_{i-1}(x_i)$, which yielded

$$c_i = 3 a_{i-1} h_{i-1}^2 + 2 b_{i-1} h_{i-1} + c_{i-1}$$

Substitution of a, b, c and d yields:

$$\frac{y_{i+1} - y_i}{h_i} - \frac{2h_i M_i + h_i M_{i+1}}{6} = 3\left(\frac{M_i - M_{i-1}}{6h_{i-1}}\right) h_{i-1}^2 + 2\frac{M_{i-1}}{2}h_{i-1} + \frac{y_i - y_{i-1}}{h_{i-1}} - \frac{2h_{i-1} M_{i-1} + h_{i-1} M_i}{6}$$

and by simplifying we get:

$$h_{i-1}M_{i-1} + 2(h_{i-1} + h_i)M_i + h_iM_{i+1} = 6\left(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}}\right)$$

• If we have n + 1 points, the relationship

$$h_{i-1}M_{i-1} + 2(h_{i-1} + h_i)M_i + h_iM_{i+1} = 6\left(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}}\right)$$

can be applied to the n-1 internal points.

- Thus we create a system of n-1 equations for the n+1 unknown M_i .
- This system can be solved if we specify the values of M_0 and M_n .

The system of n-1 equations with n+1 unknown will be written as:

$$= 6 \begin{pmatrix} \begin{pmatrix} h_0 & 2(h_0+h_1) & h_1 & \dots & \dots & h_1 \\ h_1 & 2(h_1+h_2) & h_2 & h_2 & \dots & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} M_0 \\ M_1 \\ M_2 \\ \vdots \\ M_{n-2} \\ M_{n-1} \end{pmatrix}$$

Recall

$$h_{i-1}M_{i-1} + 2(h_{i-1} + h_i)M_i + h_iM_{i+1} = 6\left(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}}\right)$$

From the solution of this linear systems we get the coefficients a_i , b_i , c_i and d_i via the relations:

$$a_{i} = \frac{M_{i+1} - M_{i}}{6h_{i}}$$

$$b_{i} = \frac{M_{i}}{2}$$

$$c_{i} = \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{2h_{i}M_{i} + h_{i}M_{i+1}}{6}$$

$$d_{i} = y_{i}$$

Let's define

$$\vec{Y} \equiv 6 \begin{pmatrix} \frac{y_2 - y_1}{h_1} - \frac{y_1 - y_0}{h_0} \\ \frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1} \\ \dots \\ \frac{y_n - y_{n-1}}{h_{n-1}} - \frac{y_{n-1} - y_{n-2}}{h_{n-2}} \end{pmatrix}$$

and

$$\vec{M} \equiv \begin{pmatrix} M_1 \\ M_2 \\ \vdots \\ M_{n-2} \\ M_{n-1} \end{pmatrix}$$

Choice I

Take, $M_0 = 0$ and $M_n = 0$. This will lead to the solution of the $(n-1) \times (n-1)$ linear system:

$$\mathbf{H} \cdot \vec{M} = \vec{Y}$$

where

$$\mathbf{H} \equiv \left(egin{array}{cccc} 2(h_0+h_1) & h_1 & & & & & & \\ h_1 & 2(h_1+h_2) & h_2 & & & & & \\ & & h_2 & 2(h_2+h_3) & h_3 & & & & \\ & & & & \dots & & & \\ & & & & h_{n-2} & 2(h_{n-2}+h_{n-1}) \end{array}
ight)$$

Choice II

Take, $M_0 = M_1$ and $M_n = M_{n-1}$. This will lead to the solution of the $(n-1) \times (n-1)$ linear system:

$$\mathbf{H} \cdot \vec{M} = \vec{Y}$$

where

$$\mathbf{H} \equiv \left(\begin{array}{cccc} 3h_0 + 2h_1 & h_1 \\ h_1 & 2(h_1 + h_2) & h_2 \\ & h_2 & 2(h_2 + h_3) & h_3 \\ & \dots & \dots \\ & & h_{n-2} & 2h_{n-2} + 3h_{n-1} \end{array} \right)$$

Choice III

Use linear extrapolation

$$\frac{M_1 - M_0}{h_0} = \frac{M_2 - M_1}{h_1} \Rightarrow M_0 = \frac{(h_0 + h_1)M_1 - h_0M_2}{h_1}$$

$$\frac{M_n - M_{n-1}}{h_{n-1}} = \frac{M_{n-1} - M_{n-2}}{h_{n-2}} \Rightarrow M_n = \frac{(h_{n-2} + h_{n-1})M_{n-1} - h_{n-1}M_{n-2}}{h_{n-2}}$$

Then

$$\mathbf{M} \equiv \left(\begin{array}{cccc} \frac{(h_0+h_1)(h_0+2h_1)}{h_1} & \frac{h_1^2-h_0^2}{h_1} \\ h_1 & 2(h_1+h_2) & h_2 \\ & h_2 & 2(h_2+h_3) & h_3 \\ & \dots & \dots \\ & \frac{h_{n-2}^2-h_{n-1}^2}{h_{n-2}} & \frac{(h_{n-1}+h_{n-2})(h_{n-1}+2h_{n-2})}{h_{n-2}} \end{array} \right)$$

Choice IV

Force the slopes at the end points to assume certain values. If $f'(x_0) = A$ and $f'(x_n) = B$ then

$$2h_0M_0 + h_1M_1 = 6\left(\frac{y_1 - y_0}{h_0} - A\right)$$

$$h_{n-1}M_{n-1} + 2h_nM_n = 6\left(B - \frac{y_n - y_{n-1}}{h_{n-1}}\right)$$

Then

$$\mathbf{H} \equiv \left(egin{array}{cccc} 2h_0 & h_1 & & & & & & \\ h_0 & 2(h_0+h_1) & h_1 & & & & & \\ & h_1 & & 2(h_1+h_2) & h_2 & & & \\ & & & \dots & & & & \\ & & & & h_{n-2} & 2h_{n-1} \end{array}
ight)$$

Interpolation with Cubic Splines: Example

Fit a cubic spline in the data ($y = x^3 - 8$):

X	0	1	2	3	4
У	-8	-7	0	19	56

• Condition I : $M_0 = 0$, $M_4 = 0$

$$\begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} M_1 \\ M_2 \\ M_3 \end{pmatrix} = \begin{pmatrix} 36 \\ 72 \\ 108 \end{pmatrix} \Rightarrow \begin{array}{c} M_1 = 6.4285 \\ M_2 = 10.2857 \\ M_3 = 24.4285 \end{array}$$

• Condition II : $M_0 = M_1$, $M_4 = M_3$

$$\begin{pmatrix} s & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & s \end{pmatrix} \cdot \begin{pmatrix} M_1 \\ M_2 \\ M_3 \end{pmatrix} = \begin{pmatrix} 36 \\ 72 \\ 108 \end{pmatrix} \Rightarrow \begin{array}{c} M_1 = M_0 = 4.8 \\ M_2 = 1.2 \\ M_3 = 19.2 = M_4 \end{array}$$

Condition III:

$$\begin{pmatrix} 6 & 0 & 0 \\ 1 & 4 & 1 \\ 0 & 0 & 6 \end{pmatrix} \cdot \begin{pmatrix} M_1 \\ M_2 \\ M_3 \end{pmatrix} = \begin{pmatrix} 36 \\ 72 \\ 108 \end{pmatrix} \Rightarrow \begin{array}{c} M_0 = 0 & M_1 = 6 \\ M_2 = 12 & M_3 = 18 \\ M_4 = 24 \end{pmatrix}$$

Condition IV :

$$\begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} M_0 \\ M_1 \\ M_2 \\ M_3 \\ M_4 \end{pmatrix} = \begin{pmatrix} 6 \\ 36 \\ 72 \\ 108 \\ 66 \end{pmatrix} \quad \begin{array}{c} M_0 = 0 \\ M_1 = 6 \\ M_2 = 12 \\ M_3 = 18 \\ M_4 = 24 \end{array}$$

Tri-diagonal Matrix

The system of equations in the cubic spline fitting method has the following form:

$$\begin{pmatrix} b_1 & c_1 & 0 & \dots & & & & \\ a_2 & b_2 & c_2 & \dots & & & & \\ 0 & a_3 & b_3 & \dots & & & & \\ & & \dots & & & & & \\ & & \dots & b_{N-2} & c_{N-2} & 0 & \\ & & \dots & a_{N-1} & b_{N-1} & c_{N-1} \\ & & \dots & 0 & a_N & b_N \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_{N-2} \\ x_{N-1} \\ x_N \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ \dots \\ d_{N-2} \\ d_{N-1} \\ d_N \end{pmatrix}$$

The matrix has the so-called tri-diagonal form. That is, each equations has the form

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i$$

Method to Solve a Tri-diagonal System

Redefine

$$c_i' = \begin{cases} \frac{c_i}{b_i} & i = 1\\ \frac{c_i}{b_i - c_{i-1}' a_i} & i = 2, 3, \dots, n-1 \end{cases}$$

and

$$d'_{i} = \begin{cases} \frac{d_{i}}{b_{i}} & i = 1\\ \frac{d_{i} - d'_{i-1}}{b_{i} - c'_{i-1}} \frac{a_{i}}{a_{i}} & i = 2, 3, \dots, n \end{cases}$$

With these new coefficients the systems takes the form

$$\begin{pmatrix} 1 & c'_1 & 0 & \dots & & & & \\ 0 & 1 & c'_2 & \dots & & & & \\ 0 & 0 & 1 & \dots & & & & \\ & & \dots & & & & \\ & & \dots & 1 & c'_{N-2} & 0 & & \\ & & \dots & 0 & 1 & c'_{N-1} & \\ & & \dots & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_{N-2} \\ x_{N-1} \\ x_N \end{pmatrix} = \begin{pmatrix} d'_1 \\ d'_2 \\ d'_3 \\ \dots \\ d'_{N-2} \\ d'_{N-1} \\ d'_N \end{pmatrix}$$

The systems can be solved using back substitution

$$x_n = d'_n$$
 $i = n$ $x_i = d'_i - c'_i x_{i+1}$ $i = n-1, n-2, n-3, \dots, 1$

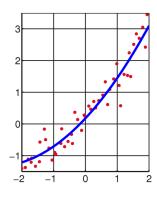
Chi-Square Fitting

- Consider a set of N data points $\{x_i, y_i\}_{i=0,...,N-1}$ with standard deviations σ_i .
- The objective is to find a model function $f(x; \vec{\beta})$ with $\vec{\beta} = \{\beta_0, \dots, \beta_M\}$ a set of M adjustable parameters.
- Such that

$$\chi^2 \equiv \sum_{i=0}^{N-1} \left(\frac{y_i - f(x_i; \vec{\beta})}{\sigma_i} \right)^2$$

is a minumum.

• Notice that $r_i \equiv y_i - f(x_i; \vec{\beta})$ are the residuals.



Fitting Data to a Straight Line

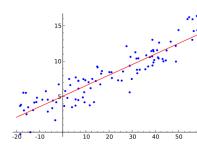
• Consider the case $f(x; \vec{\beta}) = a + bx$. Therefore

$$\chi^2 \equiv \sum_{i=0}^{N-1} \left(\frac{y_i - a - b x_i}{\sigma_i} \right)^2$$

 To minimize χ² with respect to a and b, we need to solve

$$0 = \frac{\partial \chi^2}{\partial a} = -2 \sum_{i=0}^{N-1} \frac{y_i - a - b x_i}{\sigma_i^2}$$

$$0 = \frac{\partial \chi^2}{\partial b} = -2 \sum_{i=0}^{N-1} \frac{x_i (y_i - a - b x_i)}{\sigma_i^2}$$



Define

$$S \equiv \sum_{i=0}^{N-1} \frac{1}{\sigma_i^2} \qquad S_x \equiv \sum_{i=0}^{N-1} \frac{x_i}{\sigma_i^2} \qquad S_y \equiv \sum_{i=0}^{N-1} \frac{y_i}{\sigma_i^2}$$
$$S_{xx} \equiv \sum_{i=0}^{N-1} \frac{x_i^2}{\sigma_i^2} \qquad S_{xy} \equiv \sum_{i=0}^{N-1} \frac{x_i y_i}{\sigma_i^2}$$

Then

$$aS + bS_x = S_y$$

 $aS_x = bS_{xx} = S_{xy}$

Finally

$$\Delta \equiv SS_{xx} - S_x^2$$

$$a = \frac{S_{xx}S_y - S_x S_{xy}}{\Delta}$$

$$b = \frac{SS_{xy} - S_x S_y}{\Delta}$$

Propagation of errors

$$\sigma_{f=a,b}^2 = \sum_{i=0}^{N-1} \sigma_i^2 \left(\frac{\partial f}{\partial y_i} \right)^2$$

with

$$\frac{\partial a}{\partial y_i} = \frac{S_{xx} - S_x x_i}{\sigma_i^2 \Delta}
\frac{\partial b}{\partial y_i} = \frac{S x_i - S_x}{\sigma_i^2 \Delta}$$

Thus

$$\sigma_a^2 = S_{xx}/\Delta$$

 $\sigma_b^2 = S/\Delta$

Variance, Covariance and Correlation

Consider the case in which $\sigma_i = 1$. Then

$$S \equiv \sum_{i=0}^{N-1} \frac{1}{\sigma_i^2} = N \qquad S_x \equiv \sum_{i=0}^{N-1} \frac{x_i}{\sigma_i^2} = N \overline{x} \qquad S_y \equiv \sum_{i=0}^{N-1} \frac{y_i}{\sigma_i^2} = N \overline{y}$$

$$S_{xx} \equiv \sum_{i=0}^{N-1} \frac{x_i^2}{\sigma_i^2} = N \overline{x^2}$$
 $S_{xy} \equiv \sum_{i=0}^{N-1} \frac{x_i y_i}{\sigma_i^2} = N \overline{x} \overline{y}$

where the over line denotes average. Thus

$$\Delta \equiv S S_{xx} - S_x^2 = N^2 \overline{x^2} - N^2 \overline{x}^2 = N^2 (\overline{x^2} - \overline{x}^2)$$

$$a = \frac{S_{xx} S_y - S_x S_{xy}}{\Delta} = \frac{\overline{x^2} \overline{y} - \overline{x} \overline{x} \overline{y}}{\overline{x^2} - \overline{x}^2}$$

$$b = \frac{S S_{xy} - S_x S_y}{\Delta} = \frac{\overline{xy} - \overline{x} \overline{y}}{\overline{y} - \overline{x} \overline{y}}$$

Notice

$$\begin{array}{ll} \textbf{a} & = & \dfrac{\overline{x^2}\,\overline{y} - \overline{x}\,\overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2} = \dfrac{\overline{x^2}\,\overline{y} - \overline{x}^2\,\overline{y} + \overline{x}^2\,\overline{y} - \overline{x}\,\overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2} \\ & = & \overline{y} - \overline{x}\left(\dfrac{\overline{x}\overline{y} - \overline{x}\,\overline{y}}{\overline{x^2} - \overline{x}^2}\right) = \overline{y} - \overline{x}\,\textbf{b} \\ \textbf{b} & = & \dfrac{\overline{x}\overline{y} - \overline{x}\,\overline{y}}{\overline{x^2} - \overline{x}^2} \end{array}$$

where

$$Var[x] = \overline{x^2} - \overline{x}^2$$
 Variance
 $Cov[x,y] = \overline{xy} - \overline{x}\overline{y}$ Covariance

Finally, from y = a + bx with

$$\begin{array}{rcl} \textbf{a} & = & \overline{y} - \overline{x} \, \textbf{b} \\ \textbf{b} & = & \frac{\overline{x} \overline{y} - \overline{x} \, \overline{y}}{\overline{x^2} - \overline{x}^2} \end{array}$$

we have that

$$y - \overline{y} = (x - \overline{x}) \left(\frac{\overline{xy} - \overline{x} \overline{y}}{\overline{x^2} - \overline{x}^2} \right)$$

$$\frac{y - \overline{y}}{\sqrt{\overline{y^2} - \overline{y}^2}} = \frac{x - \overline{x}}{\sqrt{\overline{x^2} - \overline{x}^2}} r_{xy}$$

where

$$r_{xy} = rac{\overline{xy} - \overline{x}\,\overline{y}}{\sqrt{\overline{x^2} - \overline{x}^2}\sqrt{\overline{y^2} - \overline{y}^2}}$$
 Correlation