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Ordinary Differential Equations

Any arbitrary system of ordinary differential equations (ODEs) can
always be re-written as a set or first-order ODEs of the form

can be re-written as
ax
at
dv
at
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Therefore, we will concentrate on methods to solve systems n ODEs
of the form

-

y' =1(x.y)
in the domain [xo, xy] where ¥ = (1, 2, - .., ¥n) and f= (i, fo, ..., fn).
What about the boundary conditions?
@ One needs impose n boundary conditions to solve the system.

@ Initial value problem: n boundary conditions are imposed at
X = Xo, thatis, y(x0) = Jb-
@ Boundary value problem: k boundary conditions are imposed at

X = xo, i.e. {y"(x0) = y{"}i—1..x» and m boundary conditions
are imposed at x = xy, i.e. {y(x0) = y{"}i_1....m such that
n=m-+Kk.

@ At this point, we will focus on boundary value problems.
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Single Step Methods : Euler step

@ Consider the ODE y’ = f(x, y) with initial boundary condition
y(xi) = yi.
@ A possible discretization of this equation is given by

Ayl y-¥i _ .
[Ax},_ X—x f(x, %)

where y denotes the solution to the discrete equation above and
y the solution to the continuum equation y’ = f(x, y).

@ Solving for y, we get
y=Yi+x—x)f(x,¥)

@ Given a mesh of grid points {xo, X1, X2, . .., Xn } such that
h = Xx;.1 — X;, we can then numerically update the solution at y;
using the following rule

Vivr =Yi+ hf;
where f; = f(X,',}_/,').



@ Recall that

a| _[By .
Lb(]i_ [AX]’—F&

where

Ay yl+1 Yi _7£ "
[Ax] Tp and &=gy

@ Therefore

Ay ady h
[Ax}- M ta
Yy Yi h
/+1h P fi“" Eyi”

h2
Yigr = Yit+hfi+ Ef’/

@ The last term is the error after each step as a consequence of
using the discrete equation.
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@ Notice that y;.1 = y; + hf; does not have that term since j is an
exact solution to the discrete equation.

@ Given the error

h2
6/’ == ?f/
made at each step will be, after N steps, the accumulated error

will be

525

@ That is, the Euler step has an accumulated error O(h), i.e. first
order in h.
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Euler Step: Propagation of Errors

Recall that in an Euler step, the exact
solution y satisfies

Yor1 =Yn+hfs + &5 3
with &, = h? fl/2.

On the other hand, the numerical solution
y satisfies

}_/n+1 = }_/n + h7n

Define ¢, as the error at step n; that is,

En="Yn—¥n
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Euler Step: Propagation of Errors

The error £, can re-write as

en = Yn—Vn

Y1+ hf(Xn—1,Yn—1) + En—1 — Yn—1 — hf(Xn—1, ¥n-1)

= ep1+h [f(xn717Ynf1) - f(Xn,1,wn,1)] + En—1

h [f(Xn—1,Yn—1) — ’:(Xn71a}7n71)]
Yn—1—Yn-1

= £&p-1+En-1

of
= e [1ngy]

where we have neglect the higher order term &,_1 « h?
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Therefore

of
En = Ep_1 {1+hay]

@ Notice that the propagation of the error is linear in the step h.
@ Error increases if of
14+ h— 1
‘ i ay’ g
@ Error decrease if

g <

oy
@ Thus, the necessary condition for absolute convergence is

2 _of
—— < — <0
h— oy —
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Convergence

@ Consider the ODE of the form

ay
o Y

which has as an exact solution y = e**.

@ According to the convergence condition for the Euler step, we

need to have
2 Of

——<—=A<0
h < oy
@ Therefore, it seems that if A > 0, it is not possible to use the
Euler method to obtain stable and convergent solutions.

@ Even in the case that A < 0, we need a step such that h < 2/|A]
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Stability

@ The Euler method in this case gives

}7n+1 :}7n+ hA}_/n = (1 + hA)}_/n

@ Let’s perturb the solution and investigate how susceptible the
Euler step is to amplifying perturbations. That is consider
Yn— Yn+dpsuchthato = C¢". Then

yn+1 + 5n+1

@ Thus

5n+1
C §n+1 —
3

(1 -l-hA) (}_/n+5n)
}_/n+1 + (1 + hA) 5n
VYn+1 + (1 4+ hA) o,

(1 + hA) d,,
(1 + hA)CE"
(14 hA)

@ To keep the perturbations under control, one needs to have
|€] < 1. Thatis, |1 + hA|] < 1, which implies again —2/h < A< 0
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Single Step Methods : Euler-Heun

This is a form of a predictor - corrector method
iststep: §* = y,+ hfy+ O(K?)
ondstep: Ypi1 = Yot é (fa+ %) + O(h®)
where * = f(xp, y*)

Can you explain the smaller error?
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Runge - Kutta Methods

Given the ODE dy
dx f(x.y) (1)
A possible prescription to update the solution from y, to y,.1 is
Ynr1 =Yn+aki + bk
with

ki = hf(Xa,Yn) (2)
ke = hf(xp+ph,ya+ gki) )

where {a, b, p, q} are constants to be determined which lead to a
second order method.
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Runge - Kutta Method: 2nd Order

Let’s derive the values of the parameters {a, b, p, q}. The constants
will be found by comparing the ansatz y, .1 = y, + aky + b ko with the
Taylor expansion

W [ df
Yot =Yn+hfn+ o5 (dx)n + O(hs)
and we notice that
o _ of ofdy
dx  Ox Oydx
_ (lf + fif
- 9x Oy

thus
— Yo+ hf,+ = of +f or
Yot = Yn "t2 \ox/), "\ay/,
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On the other hand, from

Ynt1 = =Ynt+aki+bke
Ynt+ahfp+bhf(xp+ph,yn+qhf,)

we Taylor expand
of of
f(n+Phya+ L) = ftph (ax)n+thn (W)ﬁ'"
Therefore
[ (of of
Ynit = Yo+ h(a+b)fy + 1P pb (ax>n+qbfn <8y>J

Comparing this equation with

VY i i i
Ynt1 = Yn n ) | ox . n 8}/ .

Wegett at
’ 2 2
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@ Case b=1/2: Thus a=1/2 and p = q = 1. Notice that in this
case the first step is t, + h. This version of RK is also called the
Improved Euler or Euler-Heun Method.

1
Vop1 = yn+§(k1+k2)
ki = hf(xs,yn)
ke = hf(xp+hyn+ ki)

@ Caseb=1:Thusa=0and p=qg=1/2. This is also called the
Modified Euler Method. Notice that the first step is t, + h/2.

Ynr1 = Wntke
ki = hf(xn,yn)
ke = hf(xp+h/2,yn+ ki /2)
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4th order Runge - Kutta Method

If we repeat the same procedure, comparing

Yni1 = Yn+ aki + bka + c k3 + d k4 to the corresponding Taylor
series up to O(h*), we will get a system of 11 equations with 13
unknowns. Then with the appropriate choice of two of them, we come
to a recurrence relation of the form :

Yn+1 = Yn+ (k1 + 2ko + 2k3 + k4)

where
ki = hf(xn,yn)

1
k2 = hf(Xn+ hyn+ >

2
ks = hf|x,+ h + L —k:
3 = n 5 »Yn ) 2
ks = hf(Xn+h7yn+k3)
The local error is 0(h°) and the global error 0(h*).
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Runge - Kutta - Fehlberg Method

ky =
ke =

3
k3 = hf Xn+§h,yn+372k1 32k2>

(
(
< 12 1932 7200 7296 K )
(
(

ke = hf{xp+-—=hyn+ ki — ko +

13 77" " 2197 2197 2197 °
439 3680 845
ks = hf Xn+haYn+% — 8k + 513k 4104k4>
1 8 3544 1859 11
ks = hfl|x,+ Eh,yn— Elﬂ + 2k — %ks + mlﬂ — 40/(5>
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A step with local error is O(h®) is obtained with

25 1408 2197, 1,
216 2565 4104 ¢ 57

Y1 = Yn+ <k1 + ks + ky —

A step with local error is O(h®) is obtained with

—y, (16,  66% 281, 9, 2,
Yot =Yn+ 135" T 12825 " 56430 ¢ 50 ° ' 556
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Project: Stellar Structure Models

The main physical processes that
determine the structure of stars
are:

@ Gravity
@ Internal Thermal Pressure
@ Hydrostatic Equilibrium

We will assume that the star is
isolated, static and spherically
symmetric. Therefore, the problem
is time-independent, and all the
variables depend only on the
distance from the center of the
star.
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Hydrostatic Equilibrium

Hydrostatic Equilibrium

Density:
dm | ¢

o= v

but ‘ 0

dV =dAdr=4xr?dr

therefore
— 1 dﬂ or dﬂ =4 r2
P= a7 ar ar ~ "0 P
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Hydrostatic Equilibrium

Notice that the mass enclosed within a radius r is
\[\dA

P(r+dr)

r r
m(r):/ pdV:/ Ar T pdr
0 0

The external force dFy of the enclosed mass
m(r) on the mass element dmis

Gmdm
r2
The external force dF, from the gas pressure on

dm E\

dFy = —

dFp = —[P(r+dr)—P(r)]dA
_ _[P(r+dr)—P(r)]drdA
ar
~ Py

ar
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Hydrostatic Equilibrium

The condition for equilibrium is then dF; + dF, = 0. Thus,

aP Gmdm
dr av. = r2
dP Gmdm
a r2 qv
B Gm
— 3
am
a 47rr2p
aP Gm
dar 2’

for the physical quantities: mass (m), density (p) and pressure (P).
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Equation of State

We have two equations for three unknowns. We need to provide an
addition equation to close the system: Equation of State (EOS) That
is, P = P(p).

Usually, we use the EOS to eliminate the pressure from the
equations. That is,

aP Gm
a T T ef

dPdp  Gm

dpar — 2 f
dp Gm (dP\™
2 - ()
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Boundary Conditions

am

am  _ 2
ar 47mrep

dp _ _Gm (dP\'
ar rz dp

@ Atr =0, that is at the center of the star, m=0and p = p,
@ At r = R, that is at the surface of the star, m=Mand p =0

We cannot impose all four conditions at the same time since we only
have two equations.

Typically, one pick the conditions at r = 0 and integrates out to the
surface, stoping when the density becomes p < 0
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Polytropes

@ We will model the star as a polytrope with an EOS give by
P = K", also written as P = K p(™")/7 with n called the
polytropic index; thus, ' = (n+1)/n

@ For stars like the Sun supported by radiation pressure,

I =4/3,n = 3. For stars like white dwarfs supported by
degenerate pressure  =5/3, n=3/2

@ With this EOS, we can rewrite

daP
KT r—1
dp P

@ Notice that we need to have I' < 2 so dp/dr is finite when p =0

atr=R
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A more careful calculation of the EOS yields

ap
dp

v(X)

X

Above

No

2
MV(X) where
mp
x2 .
S22 Wi
i
Po

electron per nucleon
electron mass
proton mass
mp Ny

Ye
8r mdcd
3 m
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For relativistic stars, in which one need to use General Relativity
instead of Newtonian gravity, the system of equations become

am

R — 2

ar 47rep

dp_ (p+P)(m+4xrPP) (dP\"
ar r(r—2m) dp

in units in whichc = G = 1.
The Newtonian limit is recovered when

r>2m p>P m/(4nrd)> P
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White-dwarf case

Stellar Model
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White-dwarf mass-radius relationship
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Notice that in the relativistic case, there is a maximum mass that a
WD could have ~ 1.44 M. This is the so-called Chandrasekhar

mass limit.
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