Computational Physics and Astrophysics Ordinary Differential Equations Initil-value Problems

Kostas Kokkotas University of Tübingen, Germany

and

Pablo Laguna Georgia Institute of Technology, USA

Spring 2012

Ordinary Differential Equations

Any arbitrary system of ordinary differential equations (ODEs) can always be re-written as a set or first-order ODEs of the form

$$\frac{d\vec{y}}{dx} = \vec{f}(\vec{y}, x)$$

For example, Newton's second law

$$\frac{d^2\vec{x}}{dt^2} = \frac{\vec{F}}{m}$$

can be re-written as

$$\frac{d\vec{x}}{dt} = \vec{v}$$
$$\frac{d\vec{v}}{dt} = \frac{\vec{F}}{m}$$

Therefore, we will concentrate on methods to solve systems *n* ODEs of the form

$$\vec{y}' = \vec{f}(x, \vec{y})$$

in the domain $[x_0, x_N]$ where $\vec{y} = (y_1, y_2, \dots, y_n)$ and $\vec{f} = (f_1, f_2, \dots, f_n)$. What about the boundary conditions?

- One needs impose *n* boundary conditions to solve the system.
- Initial value problem: *n* boundary conditions are imposed at $x = x_0$, that is, $\vec{y}(x_0) = \vec{y}_0$.
- Boundary value problem: *k* boundary conditions are imposed at $x = x_0$, i.e. $\{y^{(i)}(x_0) = y_0^{(i)}\}_{i=1,...,k}$, and *m* boundary conditions are imposed at $x = x_N$, i.e. $\{y^{(i)}(x_0) = y_0^{(i)}\}_{i=1,...,m}$ such that n = m + k.
- At this point, we will focus on boundary value problems.

Single Step Methods : Euler step

- Consider the ODE y' = f(x, y) with initial boundary condition $y(x_i) = y_i$.
- A possible discretization of this equation is given by

$$\left[\frac{\Delta y}{\Delta x}\right]_i = \frac{\bar{y} - \bar{y}_i}{x - x_i} = f(x, \bar{y}_i)$$

where \overline{y} denotes the solution to the discrete equation above and y the solution to the continuum equation y' = f(x, y).

Solving for y
 , we get

$$\bar{y}=\bar{y}_i+(x-x_i)\,f(x_i,\bar{y}_i)$$

• Given a mesh of grid points $\{x_0, x_1, x_2, ..., x_N\}$ such that $h = x_{i+1} - x_i$, we can then numerically update the solution at \bar{y}_i using the following rule

$$\bar{y}_{i+1}=\bar{y}_i+h\bar{f}_i$$

where $\overline{f}_i \equiv f(x_i, \overline{y}_i)$.

Recall that

$$\left[\frac{dy}{dx}\right]_{i} = \left[\frac{\Delta y}{\Delta x}\right]_{i} + \mathcal{E}_{i}$$

where

$$\left[\frac{\Delta y}{\Delta x}\right]_{i} = \frac{y_{i+1} - y_{i}}{h} \quad \text{and} \quad \mathcal{E}_{i} = -\frac{h}{2!}y_{i}''$$

• Therefore

$$\begin{bmatrix} \Delta y \\ \Delta x \end{bmatrix}_{i} = \begin{bmatrix} dy \\ dx \end{bmatrix}_{i} + \frac{h}{2!} y_{i}^{\prime\prime}$$
$$\frac{y_{i+1} - y_{i}}{h} = f_{i} + \frac{h}{2!} y_{i}^{\prime\prime}$$
$$y_{i+1} = y_{i} + h f_{i} + \frac{h^{2}}{2!} f_{i}^{\prime}$$

 The last term is the error after each step as a consequence of using the discrete equation.

- Notice that $\bar{y}_{i+1} = \bar{y}_i + h \bar{f}_i$ does not have that term since \bar{y} is an exact solution to the discrete equation.
- Given the error

$$\mathcal{E}_i = \frac{h^2}{2} f'_i$$

made at each step will be, after N steps, the accumulated error will be

$$\mathcal{E} = \sum_{i=0}^{N-1} \mathcal{E}_i = \frac{h^2}{2} \sum_{i=0}^{N-1} f_i \le h^2 N C = h^2 \frac{(x_N - x_0)}{h} C = h(x_n - x_0) C$$

 That is, the Euler step has an accumulated error O(h), i.e. first order in h. Recall that in an Euler step, the exact solution *y* satisfies

$$y_{n+1} = y_n + hf_n + \mathcal{E}_n$$

with $\mathcal{E}_n = h^2 f'_n/2$.

On the other hand, the numerical solution \bar{y} satisfies

$$\bar{y}_{n+1} = \bar{y}_n + h\bar{f}_n$$

Define ε_n as the error at step *n*; that is,

$$\varepsilon_n = y_n - \bar{y}_n$$

The error ε_n can re-write as

$$\begin{split} \varepsilon_n &= y_n - \bar{y}_n \\ &= y_{n-1} + h f(x_{n-1}, y_{n-1}) + \mathcal{E}_{n-1} - \bar{y}_{n-1} - h f(x_{n-1}, \bar{y}_{n-1}) \\ &= \varepsilon_{n-1} + h \left[f(x_{n-1}, y_{n-1}) - f(x_{n-1}, \omega_{n-1}) \right] + \mathcal{E}_{n-1} \\ &= \varepsilon_{n-1} + \varepsilon_{n-1} h \frac{\left[f(x_{n-1}, y_{n-1}) - f(x_{n-1}, \bar{y}_{n-1}) \right]}{y_{n-1} - \bar{y}_{n-1}} \\ &= \varepsilon_{n-1} \left[1 + h \frac{\partial f}{\partial y} \right] \end{split}$$

where we have neglect the higher order term $\mathcal{E}_{n-1} \propto h^2$

Therefore

$$\varepsilon_n = \varepsilon_{n-1} \left[1 + h \frac{\partial f}{\partial y} \right]$$

- Notice that the propagation of the error is linear in the step h.
- Error increases if

$$\left|1+h\frac{\partial f}{\partial y}\right|>1$$

Error decrease if

$$1+h\frac{\partial f}{\partial y}\Big|\leq 1$$

• Thus, the necessary condition for absolute convergence is

$$-\frac{2}{h} \leq \frac{\partial f}{\partial y} \leq 0$$

• Consider the ODE of the form

$$\frac{dy}{dx} = Ay$$

which has as an exact solution $y = e^{Ax}$.

 According to the convergence condition for the Euler step, we need to have

$$-\frac{2}{h} < \frac{\partial f}{\partial y} = A < 0$$

- Therefore, it seems that if A > 0, it is not possible to use the Euler method to obtain stable and convergent solutions.
- Even in the case that A < 0, we need a step such that h < 2/|A|

Stability

• The Euler method in this case gives

$$\bar{y}_{n+1} = \bar{y}_n + hA\bar{y}_n = (1+hA)\bar{y}_n$$

• Let's perturb the solution and investigate how susceptible the Euler step is to amplifying perturbations. That is consider $\bar{y}_n \rightarrow \bar{y}_n + \delta_n$ such that $\delta = C \xi^n$. Then

$$\bar{y}_{n+1} + \delta_{n+1} = (1 + hA) (\bar{y}_n + \delta_n) = \bar{y}_{n+1} + (1 + hA) \delta_n = \bar{y}_{n+1} + (1 + hA) \delta_n$$

Thus

$$\delta_{n+1} = (1 + hA) \delta_n$$

$$C \xi^{n+1} = (1 + hA) C \xi^n$$

$$\xi = (1 + hA)$$

• To keep the perturbations under control, one needs to have $|\xi| \le 1$. That is, $|1 + hA| \le 1$, which implies again -2/h < A < 0

This is a form of a predictor - corrector method

1st step :
$$\hat{y}^* = y_n + h f_n + O(h^2)$$

2nd step : $y_{n+1} = y_n + \frac{f}{2}(f_n + f^*) + O(h^3)$

where $f^* = f(x_n, y^*)$

Can you explain the smaller error?

Runge - Kutta Methods

Given the ODE

$$\frac{dy}{dx} = f(x, y) \tag{1}$$

A possible prescription to update the solution from y_n to y_{n+1} is

 $y_{n+1} = y_n + a k_1 + b k_2$

with

$$k_1 = hf(x_n, y_n) \tag{2}$$

$$k_2 = hf(x_n + ph, y_n + qk_1)$$
 (3)

where $\{a, b, p, q\}$ are constants to be determined which lead to a second order method.

Runge - Kutta Method: 2nd Order

Let's derive the values of the parameters $\{a, b, p, q\}$. The constants will be found by comparing the ansatz $y_{n+1} = y_n + ak_1 + bk_2$ with the Taylor expansion

$$y_{n+1} = y_n + h f_n + \frac{h^2}{2} \left(\frac{df}{dx}\right)_n + O(h^3)$$

and we notice that

$$\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx}$$
$$= \frac{\partial f}{\partial x} + f\frac{\partial f}{\partial y}$$

thus

$$y_{n+1} = y_n + h f_n + \frac{h^2}{2} \left[\left(\frac{\partial f}{\partial x} \right)_n + f_n \left(\frac{\partial f}{\partial y} \right)_n \right]$$

On the other hand, from

$$y_{n+1} = y_n + a k_1 + b k_2$$

= $y_n + a h f_n + b h f (x_n + p h, y_n + q h f_n)$

we Taylor expand

$$f(x_n + p h, y_n + q h f_n) = f_n + p h \left(\frac{\partial f}{\partial x}\right)_n + q h f_n \left(\frac{\partial f}{\partial y}\right)_n + \cdots$$

Therefore

$$y_{n+1} = y_n + h(a+b) f_n + h^2 \left[p b \left(\frac{\partial f}{\partial x} \right)_n + q b f_n \left(\frac{\partial f}{\partial y} \right)_n \right]$$

Comparing this equation with

$$y_{n+1} = y_n + h f_n + \frac{h^2}{2} \left[\left(\frac{\partial f}{\partial x} \right)_n + f_n \left(\frac{\partial f}{\partial y} \right)_n \right]$$

we get that

$$a+b=1,$$
 $p\cdot b=rac{1}{2}$ and $q\cdot b=rac{1}{2}$

• Case b = 1/2: Thus a = 1/2 and p = q = 1. Notice that in this case the first step is $t_n + h$. This version of RK is also called the *Improved Euler or Euler-Heun Method*.

$$y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2)$$

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + h, y_n + k_1)$$

• Case b = 1: Thus a = 0 and p = q = 1/2. This is also called the *Modified Euler Method*. Notice that the first step is $t_n + h/2$.

$$y_{n+1} = y_n + k_2$$

$$k_1 = h f (x_n, y_n)$$

$$k_2 = h f (x_n + h/2, y_n + k_1/2)$$

4th order Runge - Kutta Method

If we repeat the same procedure, comparing $y_{n+1} = y_n + ak_1 + bk_2 + ck_3 + dk_4$ to the corresponding Taylor series up to $O(h^4)$, we will get a system of 11 equations with 13 unknowns. Then with the appropriate choice of two of them, we come to a recurrence relation of the form :

$$y_{n+1} = y_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf\left(x_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}k_{1}\right)$$

$$k_{3} = hf\left(x_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}k_{2}\right)$$

$$k_{4} = hf(x_{n} + h, y_{n} + k_{3})$$

The local error is $0(h^5)$ and the global error $0(h^4)$.

Runge - Kutta - Fehlberg Method

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf\left(x_{n} + \frac{1}{4}h, y_{n} + \frac{1}{4}k_{1}\right)$$

$$k_{3} = hf\left(x_{n} + \frac{3}{8}h, y_{n} + \frac{3}{32}k_{1} + \frac{9}{32}k_{2}\right)$$

$$k_{4} = hf\left(x_{n} + \frac{12}{13}h, y_{n} + \frac{1932}{2197}k_{1} - \frac{7200}{2197}k_{2} + \frac{7296}{2197}k_{3}\right)$$

$$k_{5} = hf\left(x_{n} + h, y_{n} + \frac{439}{216}k_{1} - 8k_{2} + \frac{3680}{513}k_{3} - \frac{845}{4104}k_{4}\right)$$

$$k_{6} = hf\left(x_{n} + \frac{1}{2}h, y_{n} - \frac{8}{27}k_{1} + 2k_{2} - \frac{3544}{2565}k_{3} + \frac{1859}{4104}k_{4} - \frac{11}{40}k_{5}\right)$$

A step with local error is $O(h^5)$ is obtained with

$$y_{n+1} = y_n + \left(\frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5\right)$$

A step with local error is $O(h^6)$ is obtained with

$$y_{n+1} = y_n + \left(\frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{50}k_5 + \frac{2}{55}k_6\right)$$

Project: Stellar Structure Models

The main physical processes that determine the structure of stars are:

- Gravity
- Internal Thermal Pressure
- Hydrostatic Equilibrium

We will assume that the star is isolated, static and spherically symmetric. Therefore, the problem is time-independent, and all the variables depend only on the distance from the center of the star.

Hydrostatic Equilibrium

Hydrostatic Equilibrium

Density:

$$\rho = \frac{dm}{dV}$$

but

$$dV = dA dr = 4 \pi r^2 dr$$

therefore

$$\rho = \frac{1}{4 \pi r^2} \frac{dm}{dr} \quad \text{or} \quad \frac{dm}{dr} = 4 \pi r^2 \rho$$

Hydrostatic Equilibrium

Notice that the mass enclosed within a radius r is

$$m(r) = \int_0^r \rho \, dV = \int_0^r 4 \, \pi \, \bar{r}^2 \, \rho \, d\bar{r}$$

The external force dF_g of the enclosed mass m(r) on the mass element dm is

$$dF_g = -rac{G\,m\,dm}{r^2}$$

The external force dF_p from the gas pressure on dm

$$dF_{p} = -[P(r+dr) - P(r)] dA$$

=
$$-\frac{[P(r+dr) - P(r)]}{dr} dr dA$$

=
$$-\frac{dP}{dr} dV$$

Hydrostatic Equilibrium

The condition for equilibrium is then $dF_g + dF_p = 0$. Thus,

$$\frac{dP}{dr}dV = -\frac{Gm\,dm}{r^2}$$
$$\frac{dP}{dr} = \frac{Gm}{r^2}\frac{dm}{dV}$$
$$= -\frac{Gm}{r^2}\rho$$

In summary $\frac{dm}{dr} = 4\pi r^2 \rho$ $\frac{dP}{dr} = -\frac{Gm}{r^2} \rho$

for the physical quantities: mass (*m*), density (ρ) and pressure (*P*).

We have two equations for three unknowns. We need to provide an addition equation to close the system: Equation of State (EOS) That is, $P = P(\rho)$.

Usually, we use the EOS to eliminate the pressure from the equations. That is,

$$\frac{dP}{dr} = -\frac{Gm}{r^2}\rho$$
$$\frac{dP}{d\rho}\frac{d\rho}{dr} = -\frac{Gm}{r^2}\rho$$
$$\frac{d\rho}{dr} = -\frac{Gm}{r^2}\rho\left(\frac{dP}{d\rho}\right)^{-1}$$

Stellar Model Equations

$$\frac{dm}{dr} = 4\pi r^2 \rho$$
$$\frac{d\rho}{dr} = -\frac{Gm}{r^2} \rho \left(\frac{dP}{d\rho}\right)^{-1}$$

• At r = 0, that is at the center of the star, m = 0 and $\rho = \rho_c$

• At r = R, that is at the surface of the star, m = M and $\rho = 0$

We cannot impose all four conditions at the same time since we only have two equations.

Typically, one pick the conditions at r = 0 and integrates out to the surface, stoping when the density becomes $\rho \leq 0$

- We will model the star as a polytrope with an EOS give by $P = K \rho^{\Gamma}$, also written as $P = K \rho^{(n+1)/n}$ with *n* called the polytropic index; thus, $\Gamma = (n+1)/n$
- For stars like the Sun supported by radiation pressure, $\Gamma = 4/3, n = 3$. For stars like white dwarfs supported by degenerate pressure $\Gamma = 5/3, n = 3/2$
- With this EOS, we can rewrite

$$\frac{dP}{d\rho} = K \, \Gamma \, \rho^{\Gamma - 1}$$

 Notice that we need to have Γ ≤ 2 so dρ/dr is finite when ρ = 0 at r = R A more careful calculation of the EOS yields

$$\frac{dP}{d\rho} = \frac{Y_e c^2 m_e}{m_p} \gamma(x) \text{ where}$$

$$\gamma(x) = \frac{x^2}{3(1+x^2)^{1/2}} \text{ with}$$

$$x \equiv \frac{\rho}{\rho_0}$$

Above

 $\begin{array}{rcl} Y_e &=& \text{electron per nucleon} \\ m_e &=& \text{electron mass} \\ m_p &=& \text{proton mass} \\ \rho_0 &=& \displaystyle \frac{m_p \, n_0}{Y_e} \\ n_0 &=& \displaystyle \frac{8 \, \pi}{3} \, \frac{m_e^3 \, c^3}{h^3} \end{array}$

For relativistic stars, in which one need to use General Relativity instead of Newtonian gravity, the system of equations become

$$\frac{dm}{dr} = 4\pi r^2 \rho$$

$$\frac{d\rho}{dr} = -\frac{(\rho+P)(m+4\pi r^3 P)}{r(r-2m)} \left(\frac{dP}{d\rho}\right)^{-1}$$

in units in which c = G = 1.

The Newtonian limit is recovered when

$$r \gg 2 m \ \rho \gg P \ m/(4 \pi r^3) \gg P$$

White-dwarf case

White-dwarf mass-radius relationship

Notice that in the relativistic case, there is a maximum mass that a WD could have $\sim 1.44 M_{\odot}$. This is the so-called Chandrasekhar mass limit.