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Ordinary Differential Equations

Any arbitrary system of ordinary differential equations (ODEs) can
always be re-written as a set or first-order ODEs of the form

d~y
dx

= ~f (~y , x)

For example, Newton’s second law

d2~x
dt2 =

~F
m

can be re-written as

d~x
dt

= ~v

d~v
dt

=
~F
m
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Therefore, we will concentrate on methods to solve systems n ODEs
of the form

~y ′ = ~f (x , ~y)

in the domain [x0, xN ] where ~y = (y1, y2, . . . , yn) and ~f = (f1, f2, . . . , fn).
What about the boundary conditions?

One needs impose n boundary conditions to solve the system.
Initial value problem: n boundary conditions are imposed at
x = x0, that is, ~y(x0) = ~y0.
Boundary value problem: k boundary conditions are imposed at
x = x0, i.e. {y (i)(x0) = y (i)

0 }i=1,...,k , and m boundary conditions
are imposed at x = xN , i.e. {y (i)(x0) = y (i)

0 }i=1,...,m such that
n = m + k .
At this point, we will focus on boundary value problems.
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Single Step Methods : Euler step

Consider the ODE y ′ = f (x , y) with initial boundary condition
y(xi ) = yi .
A possible discretization of this equation is given by[

∆y
∆x

]
i

=
ȳ − ȳi

x − xi
= f (x , ȳi )

where ȳ denotes the solution to the discrete equation above and
y the solution to the continuum equation y ′ = f (x , y).
Solving for ȳ , we get

ȳ = ȳi + (x − xi ) f (xi , ȳi )

Given a mesh of grid points {x0, x1, x2, . . . , xN} such that
h = xi+1 − xi , we can then numerically update the solution at ȳi
using the following rule

ȳi+1 = ȳi + h f̄i

where f̄i ≡ f (xi , ȳi ).
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Recall that [
dy
dx

]
i

=

[
∆y
∆x

]
i

+ Ei

where [
∆y
∆x

]
i

=
yi+1 − yi

h
and Ei = − h

2!
y ′′i

Therefore [
∆y
∆x

]
i

=

[
dy
dx

]
i

+
h
2!

y ′′i

yi+1 − yi

h
= fi +

h
2!

y ′′i

yi+1 = yi + h fi +
h2

2!
f ′i

The last term is the error after each step as a consequence of
using the discrete equation.
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Notice that ȳi+1 = ȳi + h f̄i does not have that term since ȳ is an
exact solution to the discrete equation.
Given the error

Ei =
h2

2
f ′i

made at each step will be, after N steps, the accumulated error
will be

E =
N−1∑
i=0

Ei =
h2

2

N−1∑
i=0

fi ≤ h2 N C = h2 (xN − x0)

h
C = h (xn − x0) C

That is, the Euler step has an accumulated error O(h), i.e. first
order in h.
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Euler Step: Propagation of Errors

Recall that in an Euler step, the exact
solution y satisfies

yn+1 = yn + hfn + En

with En = h2 f ′n/2.

On the other hand, the numerical solution
ȳ satisfies

ȳn+1 = ȳn + hf̄n

Define εn as the error at step n; that is,

εn = yn − ȳn
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Euler Step: Propagation of Errors

The error εn can re-write as

εn = yn − ȳn

= yn−1 + h f (xn−1, yn−1) + En−1 − ȳn−1 − h f (xn−1, ȳn−1)

= εn−1 + h [f (xn−1, yn−1)− f (xn−1, ωn−1)] + En−1

= εn−1 + εn−1 h
[f (xn−1, yn−1)− f (xn−1, ȳn−1)]

yn−1 − ȳn−1

= εn−1

[
1 + h

∂f
∂y

]
where we have neglect the higher order term En−1 ∝ h2

Kokkotas & Laguna Computational Physics and Astrophysics



Therefore

εn = εn−1

[
1 + h

∂f
∂y

]

Notice that the propagation of the error is linear in the step h.
Error increases if ∣∣∣∣1 + h

∂f
∂y

∣∣∣∣ > 1

Error decrease if ∣∣∣∣1 + h
∂f
∂y

∣∣∣∣ ≤ 1

Thus, the necessary condition for absolute convergence is

−2
h
≤ ∂f
∂y
≤ 0

Kokkotas & Laguna Computational Physics and Astrophysics



Convergence

Consider the ODE of the form

dy
dx

= A y

which has as an exact solution y = eAx .
According to the convergence condition for the Euler step, we
need to have

−2
h
<
∂f
∂y

= A < 0

Therefore, it seems that if A > 0, it is not possible to use the
Euler method to obtain stable and convergent solutions.
Even in the case that A < 0, we need a step such that h < 2/|A|
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Stability

The Euler method in this case gives

ȳn+1 = ȳn + h A ȳn = (1 + h A)ȳn

Let’s perturb the solution and investigate how susceptible the
Euler step is to amplifying perturbations. That is consider
ȳn → ȳn + δn such that δ = C ξn. Then

ȳn+1 + δn+1 = (1 + hA) (ȳn + δn)

= ȳn+1 + (1 + hA) δn

= ȳn+1 + (1 + hA) δn

Thus

δn+1 = (1 + hA) δn

C ξn+1 = (1 + hA) C ξn

ξ = (1 + hA)

To keep the perturbations under control, one needs to have
|ξ| ≤ 1. That is, |1 + hA| ≤ 1, which implies again −2/h < A < 0
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Single Step Methods : Euler-Heun

This is a form of a predictor - corrector method

1st step : ŷ∗ = yn + h fn + O(h2)

2nd step : yn+1 = yn +
f
2

(fn + f ∗) + O(h3)

where f ∗ = f (xn, y∗)

Can you explain the smaller error?
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Runge - Kutta Methods

Given the ODE
dy
dx

= f (x , y) (1)

A possible prescription to update the solution from yn to yn+1 is

yn+1 = yn + a k1 + b k2

with

k1 = h f (xn, yn) (2)
k2 = h f (xn + p h, yn + q k1) (3)

where {a,b,p,q} are constants to be determined which lead to a
second order method.
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Runge - Kutta Method: 2nd Order

Let’s derive the values of the parameters {a,b,p,q}. The constants
will be found by comparing the ansatz yn+1 = yn + a k1 + b k2 with the
Taylor expansion

yn+1 = yn + h fn +
h2

2

(
df
dx

)
n

+ O(h3)

and we notice that

df
dx

=
∂f
∂x

+
∂f
∂y

dy
dx

=
∂f
∂x

+ f
∂f
∂y

thus

yn+1 = yn + h fn +
h2

2

[(
∂f
∂x

)
n

+ fn

(
∂f
∂y

)
n

]
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On the other hand, from

yn+1 = = yn + a k1 + b k2

= yn + a h fn + b h f (xn + p h, yn + q h fn)

we Taylor expand

f (xn + p h, yn + q h fn) = fn + p h
(
∂f
∂x

)
n

+ q h fn

(
∂f
∂y

)
n

+ · · ·

Therefore

yn+1 = yn + h (a + b) fn + h2
[
p b
(
∂f
∂x

)
n

+ q b fn

(
∂f
∂y

)
n

]
Comparing this equation with

yn+1 = yn + h fn +
h2

2

[(
∂f
∂x

)
n

+ fn

(
∂f
∂y

)
n

]
we get that

a + b = 1, p · b =
1
2

and q · b =
1
2
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Case b = 1/2: Thus a = 1/2 and p = q = 1. Notice that in this
case the first step is tn + h. This version of RK is also called the
Improved Euler or Euler-Heun Method.

yn+1 = yn +
1
2

(k1 + k2)

k1 = h f (xn, yn)

k2 = h f (xn + h, yn + k1)

Case b = 1: Thus a = 0 and p = q = 1/2. This is also called the
Modified Euler Method. Notice that the first step is tn + h/2.

yn+1 = yn + k2

k1 = h f (xn, yn)

k2 = h f (xn + h/2, yn + k1/2)
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4th order Runge - Kutta Method

If we repeat the same procedure, comparing
yn+1 = yn + a k1 + b k2 + c k3 + d k4 to the corresponding Taylor
series up to O(h4), we will get a system of 11 equations with 13
unknowns. Then with the appropriate choice of two of them, we come
to a recurrence relation of the form :

yn+1 = yn +
1
6

(k1 + 2k2 + 2k3 + k4)

where

k1 = h f (xn, yn)

k2 = h f
(

xn +
1
2

h, yn +
1
2

k1

)
k3 = h f

(
xn +

1
2

h, yn +
1
2

k2

)
k4 = h f (xn + h, yn + k3)

The local error is 0(h5) and the global error 0(h4).
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Runge - Kutta - Fehlberg Method

k1 = h f (xn, yn)

k2 = h f
(

xn +
1
4

h, yn +
1
4

k1

)
k3 = h f

(
xn +

3
8

h, yn +
3
32

k1 +
9
32

k2

)
k4 = h f

(
xn +

12
13

h, yn +
1932
2197

k1 −
7200
2197

k2 +
7296
2197

k3

)
k5 = h f

(
xn + h, yn +

439
216

k1 − 8k2 +
3680
513

k3 −
845

4104
k4

)
k6 = h f

(
xn +

1
2

h, yn −
8
27

k1 + 2k2 −
3544
2565

k3 +
1859
4104

k4 −
11
40

k5

)
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A step with local error is O(h5) is obtained with

yn+1 = yn +

(
25
216

k1 +
1408
2565

k3 +
2197
4104

k4 −
1
5

k5

)

A step with local error is O(h6) is obtained with

yn+1 = yn +

(
16

135
k1 +

6656
12825

k3 +
28561
56430

k4 −
9
50

k5 +
2

55
k6

)
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Project: Stellar Structure Models

The main physical processes that
determine the structure of stars
are:

Gravity
Internal Thermal Pressure
Hydrostatic Equilibrium

We will assume that the star is
isolated, static and spherically
symmetric. Therefore, the problem
is time-independent, and all the
variables depend only on the
distance from the center of the
star.
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Hydrostatic Equilibrium

Density:

ρ =
dm
dV

but

dV = dA dr = 4π r2 dr

therefore

ρ =
1

4π r2
dm
dr

or
dm
dr

= 4π r2ρ
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Hydrostatic Equilibrium

Notice that the mass enclosed within a radius r is

m(r) =

∫ r

0
ρdV =

∫ r

0
4π r̄2 ρdr̄

The external force dFg of the enclosed mass
m(r) on the mass element dm is

dFg = −G m dm
r2

The external force dFp from the gas pressure on
dm

dFp = − [P(r + dr)− P(r)] dA

= − [P(r + dr)− P(r)]

dr
dr dA

= −dP
dr

dV
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Hydrostatic Equilibrium

The condition for equilibrium is then dFg + dFp = 0. Thus,

dP
dr

dV = −G m dm
r2

dP
dr

=
G m
r2

dm
dV

= −G m
r2 ρ

In summary

dm
dr

= 4π r2ρ

dP
dr

= −G m
r2 ρ

for the physical quantities: mass (m), density (ρ) and pressure (P).
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Equation of State

We have two equations for three unknowns. We need to provide an
addition equation to close the system: Equation of State (EOS) That
is, P = P(ρ).

Usually, we use the EOS to eliminate the pressure from the
equations. That is,

dP
dr

= −G m
r2 ρ

dP
dρ

dρ
dr

= −G m
r2 ρ

dρ
dr

= −G m
r2 ρ

(
dP
dρ

)−1
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Boundary Conditions

Stellar Model Equations

dm
dr

= 4π r2ρ

dρ
dr

= −G m
r2 ρ

(
dP
dρ

)−1

At r = 0, that is at the center of the star, m = 0 and ρ = ρc

At r = R, that is at the surface of the star, m = M and ρ = 0

We cannot impose all four conditions at the same time since we only
have two equations.

Typically, one pick the conditions at r = 0 and integrates out to the
surface, stoping when the density becomes ρ ≤ 0
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Polytropes

We will model the star as a polytrope with an EOS give by
P = K ρΓ, also written as P = K ρ(n+1)/n with n called the
polytropic index; thus, Γ = (n + 1)/n
For stars like the Sun supported by radiation pressure,
Γ = 4/3,n = 3. For stars like white dwarfs supported by
degenerate pressure Γ = 5/3,n = 3/2
With this EOS, we can rewrite

dP
dρ

= K Γ ρΓ−1

Notice that we need to have Γ ≤ 2 so dρ/dr is finite when ρ = 0
at r = R
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A more careful calculation of the EOS yields

dP
dρ

=
Ye c2 me

mp
γ(x) where

γ(x) =
x2

3 (1 + x2)1/2 with

x ≡ ρ

ρ0

Above

Ye = electron per nucleon
me = electron mass
mp = proton mass

ρ0 =
mp n0

Ye

n0 =
8π
3

m3
e c3

h3
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For relativistic stars, in which one need to use General Relativity
instead of Newtonian gravity, the system of equations become

dm
dr

= 4π r2ρ

dρ
dr

= − (ρ+ P) (m + 4π r3 P)

r(r − 2 m)

(
dP
dρ

)−1

in units in which c = G = 1.
The Newtonian limit is recovered when

r � 2 m ρ� P m/(4π r3)� P
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White-dwarf case
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White-dwarf mass-radius relationship

Notice that in the relativistic case, there is a maximum mass that a
WD could have ∼ 1.44 M�. This is the so-called Chandrasekhar
mass limit.
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