Computational Physics and Astrophysics

Ordinary Differential Equations
Boundary-value Problems

Kostas Kokkotas University of Tübingen, Germany

and

Pablo Laguna Georgia Institute of Technology, USA

Spring 2012

Ordinary Differential Equations

Consider a system of n ODEs

$$\vec{y}' = \vec{f}(x, \vec{y})$$

in the domain [a, b] where $\vec{y} = (y_1, y_2, \dots, y_n)$ and $\vec{t} = (f_1, f_2, \dots, f_n)$.

- Recall that when solving this system as an initial value problem, all the conditions are specified at the same value of the independent variable on the equation. That is $\vec{y}(a) = \vec{y}_0$ or $\vec{y}(b) = \vec{y}_0$
- In a boundary-value problem, some of the conditions are specified at a and others at b.

Two-point Boundary Value Problem

Consider the following ODE,

$$\frac{d^2\phi}{dx^2} + u\frac{d\phi}{dx} + v\phi = \rho$$

where $x \in [a, b]$

Boundary Conditions

- Dirichlet: Specify the value of the solution. That is, $\phi(a) = \alpha$ and $\phi(b) = \beta$
- Neumann: Specify the value of the derivative. That is, $\phi'(a) = \alpha$ and $\phi'(b) = \beta$
- Mixed: using both Dirichlet and Neumann. That is, $\phi'(a) = \alpha$ and $\phi(b) = \beta$ or $\phi(a) = \alpha$ and $\phi'(b) = \beta$
- Robin:

$$c \phi(a) + d \phi'(a) = g$$

 $e \phi(b) + f \phi'(b) = h$

Approximate

$$\frac{d^2\phi}{dx^2}\Big|_i = \frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{h^2}$$

$$\frac{d\phi}{dx}\Big|_i = \frac{\phi_{i+1} - \phi_{i-1}}{2h}$$

Thus, in the interior points $i = 2, \dots, N-1$ we have that

$$\frac{(\phi_{i+1} - 2\phi_i + \phi_{i-1})}{h^2} + u_i \frac{(\phi_{i+1} - \phi_{i-1})}{2h} + v_i \phi_i = \rho_i$$

Which can be re-written as

$$\left[\frac{1}{h^2} - \frac{u_i}{2h}\right]\phi_{i-1} + \left[v_i - \frac{2}{h^2}\right]\phi_i + \left[\frac{1}{h^2} + \frac{u_i}{2h}\right]\phi_{i+1} = \rho_i$$

This can be rewritten as

$$a_i \phi_{i-1} + b_i \phi_i + c_i \phi_{i+1} = d_i$$

where

$$a_{i} = \left[\frac{1}{h^{2}} - \frac{u_{i}}{2h}\right]$$

$$b_{i} = \left[v_{i} - \frac{2}{h^{2}}\right]$$

$$c_{i} = \left[\frac{1}{h^{2}} + \frac{u_{i}}{2h}\right]$$

$$d_{i} = \rho_{i}$$

Tri-diagonal Matrix

The resulting system of algebraic equations has the following try-diagonal form

$$\begin{pmatrix} b_1 & c_1 & 0 & \dots & & & & \\ a_2 & b_2 & c_2 & \dots & & & & \\ 0 & a_3 & b_3 & \dots & & & & \\ & & \dots & & & & \\ & & & \dots & b_{N-2} & c_{N-2} & 0 & \\ & & & \dots & a_{N-1} & b_{N-1} & c_{N-1} \\ & & & & 0 & a_N & b_N \end{pmatrix} \cdot \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \dots \\ \phi_{N-2} \\ \phi_{N-1} \\ \phi_N \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ \dots \\ d_{N-2} \\ d_{N-1} \\ d_N \end{pmatrix}$$

Method to Solve a Tri-diagonal System

$$a_i u_{i-1} + b_i u_i + c_i u_{i+1} = d_i$$

Forward substitution

$$\gamma_i = \left\{ \begin{array}{ll} \frac{c_i}{b_i} & i = 1 \\ \\ \frac{c_{i-1}}{b_{i-1} - \gamma_{i-1} \, a_{i-1}} & i = 2, \dots, n \end{array} \right.$$

$$u_i = \left\{ \begin{array}{ll} \frac{d_i}{b_i} & i = 1 \\ \\ \frac{d_i - u_{i-1} \, a_i}{b_i - \gamma_i \, a_i} & i = 2, \dots, n \end{array} \right.$$

Back substitution

$$u_i = u_i - \gamma_{i+1} u_{i+1}$$
 $i = n-1, \ldots, 1$

```
function u = tridiag(a,b,c,d,N);
% Numerical Recipes, Press et al. 1992
if (b(1) == 0)
 fprintf(1.'Reorder equations')
end
gama = zeros(1:n);
beta = b(1):
u(1) = d(1)/beta;
% Decomposition and forward substitution
for j = 2:N
 gamma(j) = c(j-1)/beta;
 beta = b(i)-a(i)*gamma(i);
 if (beta==0)
   fprintf(1,'Solver failed...')
   pause
 u(j) = (d(j)-a(j)*u(j-1))/beta;
end
% Perform the backsubstitution
for j = N-1:-1:1
 u(j) = u(j) - \operatorname{gamma}(j+1) * u(j+1);
end
return:
```

Boundary Conditions Implementation

• Dirichlet: $\phi(a) = \alpha$ and $\phi(b) = \beta$ thus

$$a_1 = 0$$
, $b_1 = 1$, $c_1 = 0$ and $d_1 = \alpha$
 $a_N = 0$, $b_N = 1$, $c_N = 0$ and $d_N = \beta$

• Neumann: $\phi'(a) = \alpha$ and $\phi'(b) = \beta$

$$a_1 = 0$$
, $b_1 = \frac{-1}{h}$, $c_1 = \frac{1}{h}$ and $d_1 = \alpha$ $a_N = \frac{-1}{h}$, $b_N = \frac{1}{h}$, $c_N = 0$ and $d_N = \beta$

- Mixed: using both Dirichlet and Neumann. That is, $\phi'(a) = \alpha$ and $\phi(b) = \beta$ or $\phi(a) = \alpha$ and $\phi'(b) = \beta$
- Robin:

$$c \phi(a) + d \phi'(a) = g$$

 $e \phi(b) + f \phi'(b) = h$

General Two-Point Boundary Problems

Once again consider the following system of ODEs

$$\frac{dy_i(x)}{dx} = f_i(x, y_1, \cdots, y_N) \quad i = 1, \cdots, N$$

with $x \in [a, b]$

At
$$x = a$$

$$B_{1j}(a, y_1, \cdots, y_N) = 0 \quad i = 1, \cdots, n_1$$

At
$$x = b$$

$$B_{2j}(b, y_1, \dots, y_N) = 0 \quad i = 1, \dots, n_2$$

such that
$$n_1 + n_2 = N$$

Shooting Method

- At the starting point x = a there are N starting values of y_i that need to be specified, but there are only n_1 conditions $B_{1j} = 0$.
- Thus, there are $n_2 = N n_1$ freely specifiable starting values. Let's call those values $\vec{V} = (V_1, \dots, V_{n_2})$.
- Therefore, with $B_{1j}|_{j=1,\dots,n_1}=0$ and $V_j|_{j=1,\dots,n_2}$ we can contract the desired N starting values

$$y_i(a) = y_i(a, V_1, \dots, V_{n_2})$$
 $i = 1, \dots, N$

Shooting Method

- Given the values $y_i(a)$, one integrates the ODE to x = b and obtains a set of N values $y_i(b)$.
- In general, these values will not satisfy the n_2 boundary conditions $B_{2j}(b, y_1, \dots, y_N) = 0$
- Define the discrepancy vector \vec{F} as

$$F_k = B_{2k}(b, y_1, \cdots, y_N) \quad k = 0, \cdots, n_2$$

- The goal is then given the free values \vec{V} to shoot solutions until we get that $\vec{F} = 0$.
- That is, we are looking for the roots of $\vec{F}(\vec{V}) = 0$.
- One can use for instance bisection. We will try instead the Newton-Raphson method.

• The Newton-Raphson iterative procedure for this case is

$$\vec{F}(\vec{V}_{new}) = \vec{F}(\vec{V}_{old} + \delta \vec{V}) = \vec{F}(\vec{V}_{old}) + \overleftrightarrow{J} \cdot \delta \vec{V} = 0$$

with \overrightarrow{J} the Jacobian matrix

$$J_{ij} = \frac{\partial F_i}{\partial V_j}$$

Thus

$$ec{V}_{new} = ec{V}_{old} + \delta \, ec{V}$$

in which $\delta \vec{V}$ is found from

$$\overrightarrow{J} \cdot \delta \vec{V} = -\vec{F}$$

 If the derivatives in the Jacobian are difficult to compute analytically, use instead

$$\frac{\partial F_i}{\partial V_i} \approx \frac{F_i(\cdots, V_j + \Delta V_j, \cdots) - F_i(\cdots, V_j, \cdots)}{\Delta V_i}$$

Shooting Method: Example

Consider the following ODE

$$\frac{d^2u}{dt^3} + u^2 \frac{du}{dt} + u \cos(kt) = A \sin^2(qt)$$

with $t \in [a, b]$ and boundary conditions $u(a) = \alpha$, u'(a) = 0 and $u(b) = \beta$

Introduce the following definitions

$$y_1 = u$$

$$y_2 = \frac{du}{dt}$$

$$y_3 = \frac{d^2u}{dt^2}$$

Thus

$$\frac{dy_1}{dt} = y_2$$

$$\frac{dy_2}{dt} = y_3$$

$$\frac{dy_3}{dt} = -y_1^2 y_2 - y_1 \cos(kt) + A \sin^2(qt)$$

which has the desired form

$$\frac{dy_i(t)}{dt} = f_i(t, y_1, y_2, y_3)$$
 $i = 1, \dots, 3$

with boundary conditions

$$y_1(a) = \alpha$$

 $y_2(a) = 0$
 $y_1(b) = \beta$

- To start integrating, we need a condition or guess for y_3 ; that is, $y_3(a) = V$
- This condition will yield a value y_1 at x = b such that $y_1(b) \beta = F \neq 0$
- The new guess for V is then obtained from

$$V_{n+1} = V_n + \delta V$$

$$\delta V = -\frac{F_n}{\left(\frac{dF}{dV}\right)_n}$$

$$\left(\frac{dF}{dV}\right)_n = \frac{F_n - F_{n-1}}{V_n - V_{n-1}}$$