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Ordinary Differential Equations

Consider a system of n ODEs

-

y'=1(x7)

in the domain [a, b] where y = (y1, Yo, ...,¥n) and f= (fi, o, ..., fn).

@ Recall that when solving this system as an initial value problem,
all the conditions are specified at the same value of the
independent variable on the equation. That is y(a) = jp or
y(b) = Yo

@ In a boundary-value problem, some of the conditions are
specified at a and others at b.
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Two-point Boundary Value Problem

Consider the following ODE,

o do

W +u a + V¢ =p
where x € [a, b]
Boundary Conditions

@ Dirichlet: Specify the value of the solution. That is, ¢(a) = « and

p(b) =5
@ Neumann: Specify the value of the derivative. That is, ¢'(a) = «
and ¢/(b) = 3

@ Mixed: using both Dirichlet and Neumann. That is, ¢’(a) = « and
¢(b) = p or ¢(a) = vand ¢'(b) = 3

@ Robin:

co(a)+d¢'(a) = ¢
e¢(b) + f ¢/ (b) h
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Approximate

9 Piy1 —2¢i + Pi1
ax?|, h?

d¢ Pit1 — i1

ax | 2h

Thus, in the interior points i = 2,--- N — 1 we have that

(Gix1 —2i + di—1) n Git1 — Gi—1)

(
he U—%n

+ Vigi = pi

Which can be re-written as

1 uj 2 1 uj
[hz - 2;7] Gi-1+ |:Vi - hz} oi + [h? + 2;7} Git1 = pi
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This can be rewritten as

aj pi—1 + bj ¢i + Ci piy1 = d

where
= 1
aj = 727%
2
b = Vi~ s
1 Ui
Ci = 7+?
d = pi
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Tri-diagonal Matrix

The resulting system of algebraic equations has the following
try-diagonal form

b1 ci O e ¢1 d1

a b o ... d)g ab

0 as b3 . ¢3 d3
by—2 cv—2 O ON—2 dn—2
a1 bn-1 cn-q ON-1 dn—1
0 ay by ON dn
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Method to Solve a Tri-diagonal System

aj Ui—1 + b Ui + ¢ U1 =

function u = tridiag(a,b,c,d,N);

% Numerical Recipes, Press et al. 1992
Forward substitution b0
fprintf(1l,’Reorder equations’)
pause
. end
v i=1
! gama zeros (1l:n);
"Yi = beta b(1);
. u(l) = d(1)/beta;
i=2,...,n
bj_1
% Decomposition and forward substitution
for j = 2:N
a; i=1 gamma (§) = c(j-1) /beta;
b; beta = b(j)-a(j)xgamma (j);
L if (beta==0)
uj = 4 fprintf(1,’Solver failed...’)
i—Uj_1 aj .
i i—14j _ pause
Bona i=2,...,n ona
u(j) = (d(j)-a(j)*u(j-1)) /beta;
end
Back substitution .
% Perform the backsubstitution
for j = N-1:-1:1
1. i ) . u(j) = u(j)-gamma (j+1)*u(j+1);
Ui = Ui — Yit1 Ui I—n—1,...,1 end
return;
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Boundary Conditions Implementation

@ Dirichlet: ¢(a) = « and ¢(b) = § thus
a=0 b=1, ¢=0 and di=«

aN:O, bN=1, cy=0 and dNZB
@ Neumann: ¢/(a) = e and ¢/(b) =
—1 1
a1 =0 bi=— c=q
-1 1
T) bN - E?
@ Mixed: using both Dirichlet and Neumann. That is, ¢’(a) = « and
¢(b) = f or ¢(a) = a and ¢/(b) = 3

@ Robin:

and d; =«

an = cy=0 and dv=23

coa)+d¢'(a) = g
e¢(b) + f ¢/ (b) h
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General Two-Point Boundary Problems

Once again consider the following system of ODEs

dyi(x '

yo'/i):"f(xv%vaw) i=1, N
with x € [a, b]
Atx =a

Bij(a,y1, -, yn) =0 i=1,---.m
Atx=b

Boj(b,y1,---,yn) =0 i=1,---
suchthatny +n. =N
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Shooting Method

@

desired
o+ boundary
value

value

required
boundary
x

@ At the starting point x = a there are N starting values of y; that
need to be specified, but there are only ny conditions By; = 0.

@ Thus, there are n, = N — ny freely specifiable starting values.
Let’s call those values V = (V4,---, V).

@ Therefore, with B1,-{j:1 .. =0and \/,-]/.:1 o
the desired N starting values '

vi(a) =yi(a Vi, ,Vp,) i=1,---,N

] we can contract
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Shooting Method

@ Given the values y;(a), one integrates the ODE to x = b and
obtains a set of N values y;(b).

@ In general, these values will not satisfy the n, boundary
conditions Byj(b, y1,--- ,yn) =0

@ Define the discrepancy vector F as
Fk = Bok(b,y1,--- ,yn) k=0,--- o

@ The goal is then given the free values V to shoot solutions until
we get that F = 0.

@ That is, we are looking for the roots of F(V) = 0.

@ One can use for instance bisection. We will try instead the
Newton-Raphson method.
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@ The Newton-Raphson iterative procedure for this case is
S o . - S o — _,
F(Voew) = F(Volg +0V) = F(Voig) + J -6V =0

with 7 the Jacobian matrix

OF;

@ Thus

Vnew = _‘old + 5\7
in which 5V is found from

T .5V =_F

@ [f the derivatives in the Jacobian are difficult to compute
analytically, use instead
OF _Fi(-- Vi+ AV ) = Fi(-- Vo)
oV; AV,

Kokkotas & Laguna Computational Physics and Astrophysics



Shooting Method: Example

Consider the following ODE

d2U 2 dU . 2
— U+ kt)y=A
13 u ¢ u cos ( t) sin (q f)

with t € [a, b] and boundary conditions u(a) = «, v/(a) = 0 and

u(b) =

Introduce the following definitions

o= u
au
Y2 at
. dPu
Y3 = ra
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Thus

% = )
% = )
% —y2yo — y1 cos (kt) + Asin?(qt)
which has the desired form
d}:;gt) =fi(tyi,ye,y3) i=1,---,3

with boundary conditions

@ = «
ye(a) 0
np) = B

Kokkotas & Laguna Computational Physics and Astrophysics



@ To start integrating, we need a condition or guess for ys; that is,
ya(a) =V

@ This condition will yield a value y; at x = b such that
yi(b) =B =F#0

@ The new guess for V is then obtained from

Vn+1 - Vn+5v
Fn
oV = ——~+
(&),
f _ Fn_Fn71
av), = Vo= Vo
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