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Introduction

@ A differential equation involving more than one independent
variable is called a partial differential equation (PDE)

@ Many problems in applied science, physics and engineering are
modeled mathematically with PDE.

@ We will mostly focus on finite-difference methods to solve
numerically PDEs.

@ PDEs are classified as one of three types, with terminology
borrowed from the conic sections.

@ That is, for a 2nd-degree polynomial in x and y
Ax® +Bxy+Cy?+D=0

the graph is a quadratic curve, and when

e B? —4AC < 0 the curve is a ellipse,
e B? — 4AC = 0 the curve is a parabola
e B2 — 4AC > 0the curve is a hyperbola
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Similarly, given

& &) &%) oY 9P\ _
AW+Bax8y+CW+D(X’y’¢’<9)(’(%<) =0

where A, B and C are constants. There are 3 types of equations:

@ If B2 — 4AC < 0, the equation is called elliptic,
e If B2 — 4AC = 0, the equation is called parabolic
@ If B2 — 4AC > 0, the equation is called hyperbolic

The classification can be extended to PDEs in more than two
dimensions.
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Two classic examples of elliptic PDEs are the Laplace and Poisson

equations:
V2p=0 and V¢ =p
where in 3D
0? 0? 0?
2 _ Y 47
Ve o= 8x2+8y2+8z2
2 2
vz = lﬁﬂg 1. 87_,_87
r2or or r2sinfo¢?  0z2
w2 10 0 i 0 . 0 1 0?

Torar T rzsine@smeﬁ + r2 sin? g 002
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Boundary-value Problem

V2¢ =p inadomain Q

Boundary Conditions
@ Dirichlet: ¢ = by on 99

@ Neumann: 2¢ = /- V¢ = b, on 0Q
@ Robin: 22 + a ¢ =h- Ve = b; on 90
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Classic examples of hyperbolic PDEs are:

1 024 5 .
“ZaE + V< = 0 wave equation

o 5 . .

o +V.V¢ = 0 advection equation

Classic example of parabolic PDEs are

%—V%DVW = 0 diffusion equation
%_av% = 0 heat equation

Notice from the diffusion equation that

W.ig.J

9t = 0 continuity equation

—

J = —DVvy Fick’s first law



@ Let’s consider the 1D case
Oip+voxp=0

with v = const > 0, t > 0 and
x €[0,1]

@ Initial data: ¢(0, x) = ¢o(x)

@ Boundary conditions:
o(t,0) = «(t) and
o(t, 1) = B(t)

@ Solutions to this equation
have the form
o(t,x) = p(x — vi)

@ Therefore, the solution ¢(t, x)
is constant along the lines
x — vt = const called
characteristics

Advection or Convection Equation

0,,0) = a(r,)

#(0,x,) =, (x;)
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Forward-Time Center-Space (FTCS) Discretization

@ Let’s consider the following discretization of the differential

operators
P — pn
no_ i i
8,q5, Al + O(At)
n In—H - In—‘] 2
8x¢/ = T oAx + O(AX )

where we have used the notation ¢ = #(t", x;)
@ Therefore, the finite difference approximation to 9;¢ + voxp =0

is _ _
(6" = 9p) , , (a — 1)
At 2 Ax
@ Notice that we are making a distinction between the solution
o(t, x) to the continuum equation and ¢{ the solution to the
discrete equation.

=0
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Solving B B
(o7t — M) (o4 — o1 4)
At YT 2ax

for J>§7+1, one gets the following relationship to update the solution

- I -
ot =] - 5C (61 — of-1)
where C = Atv/Ax

/N
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Stability

@ The tendency for any perturbation in the numerical solution to
decay.

@ That is, given a discretization scheme, we need to evaluate the
degree to which errors introduced at any stage of the
computation will grow or decay.

@ We are then concerned with the behavior of the solution error
& =7 — 3

@ Substitution of ¢ = ¢ — ¢ into
- N -
ot =g - 5C (01 — &i-1)
yields

1
n+1 n+1 _ .n n n n n n
o €T =¢) —€ — EC (o4 — €l — Oy + €l 4)
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@ Substitute the following Taylor expansions

™ = @7+ Atdg! + O(AR)
Oy = Of £ Axxg] + O(Ax?)
@ Then
Of + Dt — e = o — €]
_%c (07 + Ax Oxpf — €y — o7 + DX Ox 9] + €] )
or
Atord] — " = €] — %C (2AX 0] — efq +€ly)
G = 1C (e — ly) + DL — C X,
e,’-7+1 =¢l — %C (€7+1 — 6?71) + At (0] — v Oxol)
et = - %C (€1 — €4)
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@ That is, the solution error satisfies also the discrete finite
differences approximation

1
n+1 _ _n n n
& =€ - EC (€i+1 - 6:'—1)

@ Von Neumann stability analysis: Assume that the errors satisfy a
“separation-of-variables” of the form

6,’-7 — §”e”‘f _ fn eIkij

where [ = /-1, k =27/ and £ is a complex amplitude. The n
in £" is understood to be a power.

@ The condition of stability is |¢| < 1 for all k.

Kokkotas & Laguna Computational Physics and Astrophysics



Substitution of €7 = ¢" e/¥AX7into the finite difference equation yields

gn1 gl kAXi _ en gl kAXI _ 10 <§n ol K AX (i+1) _ ¢n e/kAx(iq))
2

§n+1 —en %C (gn el kax _ ¢n e—lkAx)

£=1-— %C (eIkAx _ e—IkAx)

E=1- %Clein(kAx)
¢ =1—-1C sin(k Ax)

€2 =1+ C? sin® (k Ax)

Therefore FTCS discretization applied to the advection equation is
unstable.
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Forward-Time Forward-Space (FTFS) Discretization

Approximate the advection equation as

@ =ap) G =)

At Ax 0

thus B B B _
o7 =] — C (o1 — 4f)
where C = Atv/Ax

N

X\ 1 X\ X" 1
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FTFS Stability

Substitute ! = ¢" e/ A% into
e = (14 C)e! — Cel.
§n+1 eIkAxi _ (1 + C)fn eIkAxi _ an eIkAX(I'-H)

£n+1 _ (1 + C)fn* Cfne/kAX
{=(1+C)—Cek#

|£|2 _ [(1 + C) _ CelkAX] [(1 + C) . CeflkAx}

€= (14 C)2+ C? — (1+ C)C (/K" + e 'kAY)
€2 =1+ C)2+C?—2(1+ C)C cos (k Ax)
I€2=14+2(1+ C)C [1 —cos(k Ax)] > 1

the method is unstable
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Forward-Time Backward-Space (FTFS) Discretization

Approximate the advection equation as

A W )

At Ax 0

thus ~ B _ B
¢ =] — C (8] — d1y)
where C = Atv/Ax

/

X1 X Xioy
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FTBS Stability

Substitute ! = ¢" e/ k2% into

M =(1-C)e +Cel

€n+1 eIkAxi _ (1 _ C)fn eIkAxi + an eIkAx(i71)
§n+1 _ (1 _ C)gn + an eflkAX
E=(1-C)+Ce kA~

€ = [(1 =€)+ Ce /&% [(1 - €) + Celka]
€F = (1= CY+ C*+ (1 - C)C ("™ - e7'k2)
€2 =(1-C)®+ C?+2(1 — C)C cos (k Ax)

€2 =1-2(1 - C)C [1 — cos (k Ax)]
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Given
£2P=1-2(1-C)C[1—cos(kAx)]

in order to have [£|? < 1

-1<1-2(1-C)C[1—cos(kAx)] <A1
—2<-2(1-C)C[1 —cos(kAx)] <0
1>(1-C)C[1—-cos(kAx)]>0

thus

1-C
C
v At
Ax
Thus for stablility we need to pick a time-step

NP
4

0
1

1

IN IV

IN
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The stablility condition

A< BX
v

implies that the numerical characteristics are contained within the
physical characteristics since

At 1
— < -
Ax — v
t- l X = const
v YAV ﬁ,\' = const
7.7 Ax
//
tn'l-]
s/
P Ar
s //
tn y /ﬁ// T
/s 4 A
1 / /
tn 7
// /
/
Xi-1 Xi Xi+1
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How does FTBS prevent the onset of instabilities?

Recall
¢t =o' = C (o] — o]1)
where C = Atv/Ax. Substitute

At?
oM = 7+ AtOd! + —— a,2¢, + O(AR)
2
G, = & — AXed) +A—Xa?¢, + O(AX?)

then

O + At Dyl LA 82¢, 7

Ax?
—C |0] = of + Dx0x0] — —— 50]
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Then

At2 At Ax?

AX
O+ —- 3t¢——V[5x¢—28§¢]
AX
Orp + v8x¢+ afa:— a§¢:0
but from 9;¢ = —v dx¢ we have that

026 = —v Didxd = —v Dxhd = V2 2

thus
3t¢+VaX¢+V2At82(Z5— —a% 0
By + v Do + <v %— A2X> 826 =0
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a@+v@¢+<ﬁgtf¥)a%_o

At

Ax
Ot + V Oy — v (1 - vA)() 2p=0

O+ v Oy — v%m ~C)Rs=0

This equation has the form
Op+vxd —adip=0
advection-diffusion equation with
Ax

Recall that for stability C < 1, thus o > 0.
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Given
(b(t, X) _ ¢0 e—pt e—ik(x—qt)

Substitution into

Oip+vokp=0 = p=0 q=v
o+ Vvixp—ad?p=0 = p=ak® g=v dissipation

o+ Vvixp—B33p=0 = p=0 qg=v—pk* dispersion

@ That is, the FTBS discretization introduces artificial numerical
dissipation to prevent the growth of instabilities.

@ Notice that the dissipation coefficient o oc At.
@ Therefore, in the continuum limit limay_oa =0
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Method of Lines

@ The method of lines (MOL) is a numerical technique for solving
PDEs by discretizing all the spatial derivatives.

@ The net effect is translating the problem into an
initial-value-problem with only one independent variable, time.

@ The resulting system of ODEs (semi-discrete problem) is solved
using sophisticated general purpose methods and software that
have been developed for numerically integrating ODEs.

As an example, let’s consider the advection equation
8,gz5 = *Vax(,lﬁ

with t <0, v > 0, and x € [0, 1]. The initial data is ¢(f = 0, x) = f(x)
and the boundary condition ¢(f, x = 0) = g(t).
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@ We first discretize the spatial derivative dy¢

Dyd], = ¢i+12;fi—1

@ Thus, the semi-discrete problem is

doi v(¢i+1 — ¢i_1)

dt 2 Ax

@ Notice that we now have a coupled system of ODEs of the form

do;
at

for which we can apply the methods we discussed before, in
particular Runge-Kutta methods.

@ Given that we are using center-space discretization, applying an
Euler step (i.e. forward-time) will be unstable.
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Burger’s Equation

@ Recall the advection equation ;¢ + udx¢ = 0 in which the
quantity ¢ is advected or convected with a velocity u.

@ Consider instead 0;u + udyu = 0. That is, the velocity at which
the quantity is advected depends on the quantity itself.

@ This equation is called the inviscid Burger’s equation.

@ This equation is widely used as a model to investigate
non-linearities in fluid dynamics traffic control, etc..

@ The general form of the Burger’s equation is
U+ udyu = vd?u

with v a viscosity coefficient.
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@ Consider the inviscid Burger’s equation 0;u + u dyu = 0 with
initial data u(t = 0, x) = up(x)

@ Method of Characteristics: Find the curves x(t) tangent to the
vector 0y + u Oy, such that u(t, x(t)) is constant.

@ That is,
PO uex)
du(t, x(1)) _ ou n dx du
dt ot = dt ox
_ +u ou _ 0
ot ox

@ The solutions are

u(t, x(t))
x(1)

u(0, x(0)) = up(xo)
Xo + tu(0,x(0)) = xo + t Uo(x0)
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@ Therefore, the solution to the Burger’s equation reads
u(t, x) = uo(x — tuo(xo))

@ Thus, the solution is constant along the characteristics
Xo = X — tUp(Xp)-

@ The characteristics are straight lines with slope 1/uy(xp) in the
t — x plain.

@ For each characteristic, the value of the slope is fixed by the
initial data up(x) at x = xo
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Consider initial data of the form

Y t
u

! X—Ugt=x,
| X—upt =x;
| CrTTTTTT -

|

I\

| ,

| | Multi-valued

solution

|

L

X X X A X

1 X XX X
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The pulse evolves as

A A

Notice that the larger the value of u the more advected that portion of
the solutions gets.
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Let S = O,u, then
as ax

E = a[SJF Eaxs:atS"' U@XS
Ot0xU + U D2uU = Ox(Oru + U Dyu) — (DxU)?
- -8

The solution to this equation is

So OxUo
= 8 = ——
tS+1 O XU 0w+

Therefore, as t — —1/0xUp the slope of the solution diverges, that is,
OxU — oo. In other words, the solution develops a shock discontinuity.

In the case of the general viscous Burger’s equation (v # 0), the
shock profile gets smoothed out due to the dissipation.
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Shock Boundary

@ Consider initial data such that 92uy(x) = 0 everywhere and
OxUp(x) = const < 0 if x € [xy, Xo].

@ Recall that the characteristics are given by the straight lines
X = X + Up(X) t where X is the value of x at t = 0.

@ Recall also that the shock will develop when t* = —1/0,up(X).
@ Therefore, the location where the shock develops is
X=X+ Up(x) t*
@ Consider to points x3, Xp such that x; < xg, xp < xo
@ Then

Xa+ Ug(Xa) 1" = Xp+ (Xa— Xb) + [Uo(Xp) + (Xa — Xb)OxUo(Xp)] t*
a)(UO(Xb)

Xp + (Xa — Xp) + Uo(Xp) t* — (Xa — Xb)@ Uo(Xb)

= Xp+ Uo(Xb) t*

@ Therefore, all the characteristics starting within the interval
[x1, X2] cross at the same point given by x = X — ug(X)/0xUo(X)
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@ Location of the shock boundary point x = X — uo(X)/9xUo(X)

@ Notice that the characteristics have different slopes but the same
shock developing time.

@ Thus, the shape of the boundary shock depends on the “shape”
of the initial data.

/ Shock boundary

SN\
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