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Introduction

A differential equation involving more than one independent
variable is called a partial differential equation (PDE)
Many problems in applied science, physics and engineering are
modeled mathematically with PDE.
We will mostly focus on finite-difference methods to solve
numerically PDEs.
PDEs are classified as one of three types, with terminology
borrowed from the conic sections.
That is, for a 2nd-degree polynomial in x and y

Ax2 + Bxy + Cy2 + D = 0

the graph is a quadratic curve, and when
B2 − 4AC < 0 the curve is a ellipse,
B2 − 4AC = 0 the curve is a parabola
B2 − 4AC > 0 the curve is a hyperbola
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Similarly, given

A
∂2ψ

∂x2 + B
∂2ψ

∂x∂y
+ C

∂2ψ

∂y2 + D
(

x , y , ψ,
∂ψ

∂x
,
∂ψ

∂x

)
= 0

where A, B and C are constants. There are 3 types of equations:

If B2 − 4AC < 0, the equation is called elliptic,
If B2 − 4AC = 0, the equation is called parabolic
If B2 − 4AC > 0, the equation is called hyperbolic

The classification can be extended to PDEs in more than two
dimensions.
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Two classic examples of elliptic PDEs are the Laplace and Poisson
equations:

∇2φ = 0 and ∇2φ = ρ

where in 3D

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

∇2 =
1
r2

∂
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1
r2 sin θ

∂2

∂φ2 +
∂2
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1
r
∂

∂r
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1
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∂2
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Boundary-value Problem

∇2φ = ρ in a domain Ω

Boundary Conditions

Dirichlet: φ = b1 on ∂Ω

Neumann: ∂φ
∂n = n̂ · ∇φ = b2 on ∂Ω

Robin: ∂φ
∂n + αφ = n̂ · ∇φ = b3 on ∂Ω
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Classic examples of hyperbolic PDEs are:

− 1
c2
∂2ψ

∂t2 +∇2ψ = 0 wave equation

∂ψ

∂t
+ ~V · ∇ψ = 0 advection equation

Classic example of parabolic PDEs are

∂ψ

∂t
−∇ · (D∇ψ) = 0 diffusion equation

∂ψ

∂t
− α∇2ψ = 0 heat equation

Notice from the diffusion equation that

∂ψ

∂t
+∇ · ~J = 0 continuity equation

~J = −D∇ψ Fick’s first law
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Advection or Convection Equation

Let’s consider the 1D case

∂tφ+ v ∂xφ = 0

with v = const > 0, t ≥ 0 and
x ∈ [0,1]

Initial data: φ(0, x) = φ0(x)

Boundary conditions:
φ(t ,0) = α(t) and
φ(t ,1) = β(t)
Solutions to this equation
have the form
φ(t , x) = φ(x − v t)
Therefore, the solution φ(t , x)
is constant along the lines
x − v t = const called
characteristics
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Forward-Time Center-Space (FTCS) Discretization

Let’s consider the following discretization of the differential
operators

∂tφ
n
i =

φn+1
i − φn

i

∆t
+ O(∆t)

∂xφ
n
i =

φn
i+1 − φn

i−1

2 ∆x
+ O(∆x2)

where we have used the notation φn
i ≡ φ(tn, xi )

Therefore, the finite difference approximation to ∂tφ+ v ∂xφ = 0
is

(φ̄n+1
i − φ̄n

i )

∆t
+ v

(φ̄n
i+1 − φ̄n

i−1)

2 ∆x
= 0

Notice that we are making a distinction between the solution
φ(t , x) to the continuum equation and φ̄n

i the solution to the
discrete equation.

Kokkotas & Laguna Computational Physics and Astrophysics



Solving
(φ̄n+1

i − φ̄n
i )

∆t
+ v

(φ̄n
i+1 − φ̄n

i−1)

2 ∆x
= 0

for φ̄n+1
i , one gets the following relationship to update the solution

φ̄n+1
i = φ̄n

i −
1
2

C
(
φ̄n

i+1 − φ̄n
i−1
)

where C ≡ ∆t v/∆x
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Stability

The tendency for any perturbation in the numerical solution to
decay.
That is, given a discretization scheme, we need to evaluate the
degree to which errors introduced at any stage of the
computation will grow or decay.
We are then concerned with the behavior of the solution error

εni = φn
i − φ̄n

i

Substitution of φ̄n
i = φn

i − εni into

φ̄n+1
i = φ̄n

i −
1
2

C
(
φ̄n

i+1 − φ̄n
i−1
)

yields

φn+1
i − εn+1

i = φn
i − εni −

1
2

C
(
φn

i+1 − εni+1 − φn
i−1 + εni−1

)
Kokkotas & Laguna Computational Physics and Astrophysics



Substitute the following Taylor expansions

φn+1
i = φn

i + ∆t ∂tφ
n
i + O(∆t2)

φn
i±1 = φn

i ±∆x ∂xφ
n
i + O(∆x2)

Then

φn
i + ∆t ∂tφ

n
i − εn+1

i = φn
i − εni

−1
2

C
(
φn

i + ∆x ∂xφ
n
i − εni+1 − φn

i + ∆x ∂xφ
n
i + εni−1

)
or

∆t ∂tφ
n
i − εn+1

i = −εni −
1
2

C
(
2 ∆x ∂xφ

n
i − εni+1 + εni−1

)
εn+1

i = εni −
1
2

C
(
εni+1 − εni−1

)
+ ∆t ∂tφ

n
i − C ∆x ∂xφ

n
i

εn+1
i = εni −

1
2

C
(
εni+1 − εni−1

)
+ ∆t (∂tφ

n
i − v ∂xφ

n
i )

εn+1
i = εni −

1
2

C
(
εni+1 − εni−1

)
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That is, the solution error satisfies also the discrete finite
differences approximation

εn+1
i = εni −

1
2

C
(
εni+1 − εni−1

)
Von Neumann stability analysis: Assume that the errors satisfy a
“separation-of-variables” of the form

εni = ξn eI xj = ξn eI k ∆x j

where I =
√
−1, k = 2π/λ and ξ is a complex amplitude. The n

in ξn is understood to be a power.
The condition of stability is |ξ| ≤ 1 for all k .
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Substitution of εni = ξn eI k ∆x i into the finite difference equation yields

ξn+1 eI k ∆x i = ξn eI k ∆x i − 1
2

C
(
ξn eI k ∆x (i+1) − ξn eI k ∆x (i−1)

)
ξn+1 = ξn − 1

2
C
(
ξn eI k ∆x − ξn e−I k ∆x

)
ξ = 1− 1

2
C
(

eI k ∆x − e−I k ∆x
)

ξ = 1− 1
2

C 2 I sin (k ∆x)

ξ = 1− I C sin (k ∆x)

|ξ|2 = 1 + C2 sin2 (k ∆x)

Therefore FTCS discretization applied to the advection equation is
unstable.
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Forward-Time Forward-Space (FTFS) Discretization
Approximate the advection equation as

(φ̄n+1
i − φ̄n

i )

∆t
+ v

(φ̄n
i+1 − φ̄n

i )

∆x
= 0

thus
φ̄n+1

i = φ̄n
i − C

(
φ̄n

i+1 − φ̄n
i
)

where C ≡ ∆t v/∆x
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FTFS Stability

Substitute εni = ξn eI k ∆x i into

εn+1
i = (1 + C)εni − C εni+1

ξn+1 eI k ∆x i = (1 + C)ξn eI k ∆x i − C ξn eI k ∆x (i+1)

ξn+1 = (1 + C)ξn − C ξn eI k ∆x

ξ = (1 + C)− C eI k ∆x

|ξ|2 =
[
(1 + C)− C eI k ∆x

] [
(1 + C)− C e−I k ∆x

]
|ξ|2 = (1 + C)2 + C2 − (1 + C)C (eI k ∆x + e−I k ∆x )

|ξ|2 = (1 + C)2 + C2 − 2 (1 + C)C cos (k ∆x)

|ξ|2 = 1 + 2 (1 + C)C [1− cos (k ∆x)] ≥ 1

the method is unstable
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Forward-Time Backward-Space (FTFS) Discretization
Approximate the advection equation as

(φ̄n+1
i − φ̄n

i )

∆t
+ v

(φ̄n
i − φ̄n

i−1)

∆x
= 0

thus
φ̄n+1

i = φ̄n
i − C

(
φ̄n

i − φ̄n
i−1
)

where C ≡ ∆t v/∆x
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FTBS Stability

Substitute εni = ξn eI k ∆x i into

εn+1
i = (1− C)εni + C εni−1

ξn+1 eI k ∆x i = (1− C)ξn eI k ∆x i + C ξn eI k ∆x (i−1)

ξn+1 = (1− C)ξn + C ξn e−I k ∆x

ξ = (1− C) + C e−I k ∆x

|ξ|2 =
[
(1− C) + C e−I k ∆x

] [
(1− C) + C eI k ∆x

]
|ξ|2 = (1− C)2 + C2 + (1− C)C (eI k ∆x + e−I k ∆x )

|ξ|2 = (1− C)2 + C2 + 2 (1− C)C cos (k ∆x)

|ξ|2 = 1− 2 (1− C)C [1− cos (k ∆x)]
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Given
ξ|2 = 1− 2 (1− C)C [1− cos (k ∆x)]

in order to have |ξ|2 ≤ 1

−1 ≤ 1− 2 (1− C)C [1− cos (k ∆x)] ≤ 1
−2 ≤ −2 (1− C)C [1− cos (k ∆x)] ≤ 0
1 ≥ (1− C)C [1− cos (k ∆x)] ≥ 0

thus

1− C ≥ 0
C ≤ 1

v ∆t
∆x

≤ 1

Thus for stablility we need to pick a time-step

∆t ≤ ∆x
v
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The stablility condition

∆t ≤ ∆x
v

implies that the numerical characteristics are contained within the
physical characteristics since

∆t
∆x
≤ 1

v
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How does FTBS prevent the onset of instabilities?

Recall
φn+1

i = φn
i − C

(
φn

i − φn
i−1
)

where C ≡ ∆t v/∆x . Substitute

φn+1
i = φn

i + ∆t ∂tφ
n
i +

∆t2

2
∂2

t φ
n
i + O(∆t3)

φn
i−1 = φn

i −∆x ∂xφ
n
i +

∆x2

2
∂2

xφ
n
i + O(∆x3)

then

φn
i + ∆t ∂tφ

n
i +

∆t2

2
∂2

t φ
n
i = φn

i

−C
[
φn

i − φn
i + ∆x ∂xφ

n
i −

∆x2

2
∂2

xφ
n
i

]
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Then

∆t ∂tφ+
∆t2

2
∂2

t φ = −v
∆t
∆x

[
∆x ∂xφ−

∆x2

2
∂2

xφ

]
∂tφ+

∆t
2
∂2

t φ = −v
[
∂xφ−

∆x
2
∂2

xφ

]
∂tφ+ v ∂xφ+

∆t
2
∂2

t φ− v
∆x
2
∂2

xφ = 0

but from ∂tφ = −v ∂xφ we have that

∂2
t φ = −v ∂t∂xφ = −v ∂x∂tφ = v2 ∂2

xφ

thus

∂tφ+ v ∂xφ+ v2 ∆t
2
∂2

xφ− v
∆x
2
∂2

xφ = 0

∂tφ+ v ∂xφ+

(
v2 ∆t

2
− v

∆x
2

)
∂2

xφ = 0
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∂tφ+ v ∂xφ+

(
v2 ∆t

2
− v

∆x
2

)
∂2

xφ = 0

∂tφ+ v ∂xφ− v
∆x
2

(
1− v

∆t
∆x

)
∂2

xφ = 0

∂tφ+ v ∂xφ− v
∆x
2

(1− C) ∂2
xφ = 0

This equation has the form

∂tφ+ v ∂xφ− α∂2
xφ = 0

advection-diffusion equation with

α ≡ v
∆x
2

(1− C)

Recall that for stability C ≤ 1, thus α ≥ 0.
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Given
φ(t , x) = φ0 e−pt e−i k(x−q t)

Substitution into

∂tφ+ v ∂xφ = 0 ⇒ p = 0 q = v

∂tφ+ v ∂xφ− α∂2
xφ = 0 ⇒ p = α k2 q = v dissipation

∂tφ+ v ∂xφ− β ∂3
xφ = 0 ⇒ p = 0 q = v − β k2 dispersion

That is, the FTBS discretization introduces artificial numerical
dissipation to prevent the growth of instabilities.
Notice that the dissipation coefficient α ∝ ∆t .
Therefore, in the continuum limit lim∆x→0 α = 0
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Method of Lines

The method of lines (MOL) is a numerical technique for solving
PDEs by discretizing all the spatial derivatives.
The net effect is translating the problem into an
initial-value-problem with only one independent variable, time.
The resulting system of ODEs (semi-discrete problem) is solved
using sophisticated general purpose methods and software that
have been developed for numerically integrating ODEs.

As an example, let’s consider the advection equation

∂tφ = −v ∂xφ

with t ≤ 0, v > 0, and x ∈ [0,1]. The initial data is φ(t = 0, x) = f (x)
and the boundary condition φ(t , x = 0) = g(t).
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We first discretize the spatial derivative ∂xφ

∂xφ|i =
φi+1 − φi−1

2 ∆x

Thus, the semi-discrete problem is

dφi

dt
= −v

(φi+1 − φi−1)

2 ∆x

Notice that we now have a coupled system of ODEs of the form

dφi

dt
= ρ(t , φj )

for which we can apply the methods we discussed before, in
particular Runge-Kutta methods.
Given that we are using center-space discretization, applying an
Euler step (i.e. forward-time) will be unstable.
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Burger’s Equation

Recall the advection equation ∂tφ+ u ∂xφ = 0 in which the
quantity φ is advected or convected with a velocity u.
Consider instead ∂tu + u ∂xu = 0. That is, the velocity at which
the quantity is advected depends on the quantity itself.
This equation is called the inviscid Burger’s equation.
This equation is widely used as a model to investigate
non-linearities in fluid dynamics traffic control, etc..
The general form of the Burger’s equation is

∂tu + u ∂xu = ν∂2u

with ν a viscosity coefficient.
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Consider the inviscid Burger’s equation ∂tu + u ∂xu = 0 with
initial data u(t = 0, x) = u0(x)

Method of Characteristics: Find the curves x(t) tangent to the
vector ∂t + u ∂x , such that u(t , x(t)) is constant.
That is,

dx(t)
dt

= u(t , x(t))

du(t , x(t))

dt
=

∂u
∂t

+
dx
dt
∂u
∂x

=
∂u
∂t

+ u
∂u
∂x

= 0

The solutions are

u(t , x(t)) = u(0, x(0)) = u0(x0)

x(t) = x0 + t u(0, x(0)) = x0 + t u0(x0)
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Therefore, the solution to the Burger’s equation reads
u(t , x) = u0(x − t u0(x0))

Thus, the solution is constant along the characteristics
x0 = x − t u0(x0).
The characteristics are straight lines with slope 1/u0(x0) in the
t − x plain.
For each characteristic, the value of the slope is fixed by the
initial data u0(x) at x = x0
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Consider initial data of the form
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The pulse evolves as

Notice that the larger the value of u the more advected that portion of
the solutions gets.
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Let S ≡ ∂xu, then

dS
dt

= ∂tS +
dx
dt
∂xS = ∂tS + u ∂xS

= ∂t∂xu + u ∂2
x u = ∂x (∂tu + u ∂xu)− (∂xu)2

= −S2

The solution to this equation is

S =
S0

t S0 + 1
or ∂xu =

∂xu0

t ∂xu0 + 1

Therefore, as t → −1/∂xu0 the slope of the solution diverges, that is,
∂xu →∞. In other words, the solution develops a shock discontinuity.

In the case of the general viscous Burger’s equation (ν 6= 0), the
shock profile gets smoothed out due to the dissipation.
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Shock Boundary

Consider initial data such that ∂2
x u0(x) = 0 everywhere and

∂xu0(x) = const < 0 if x ∈ [x1, x2].
Recall that the characteristics are given by the straight lines
x = x̄ + u0(x̄) t where x̄ is the value of x at t = 0.
Recall also that the shock will develop when t∗ = −1/∂xu0(x̄).
Therefore, the location where the shock develops is
x = x̄ + u0(x̄) t∗

Consider to points xa, xb such that x1 ≤ xa, xb ≤ x2

Then

xa + u0(xa) t∗ = xb + (xa − xb) + [u0(xb) + (xa − xb)∂xu0(xb)] t∗

= xb + (xa − xb) + u0(xb) t∗ − (xa − xb)
∂xu0(xb)

∂xu0(xb)

= xb + u0(xb) t∗

Therefore, all the characteristics starting within the interval
[x1, x2] cross at the same point given by x = x̄ − u0(x̄)/∂xu0(x̄)
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Location of the shock boundary point x = x̄ − u0(x̄)/∂xu0(x̄)
Notice that the characteristics have different slopes but the same
shock developing time.
Thus, the shape of the boundary shock depends on the “shape”
of the initial data.
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