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Parabolic PDEs: Heat Equation

@ Consider the 1D heat equation
ou_ pofu
ot T ox?
with D > 0 inthe domain0 < x < Landt>0.
@ Boundary conditions:

U(OJ) =
ull,t) = o
fort >0
@ Initial conditions :
u(x,0) = f(x)

forO0 < x <L.
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Consider the following computational domain:

e
u(x, 'y =u’
w0.0=¢, © wL=c,
o1
° L X
Xy X, Xy
u(x,0)= f(x)

Mesh spacing:

AX = Xgp1—xp=L/(M-1) i=1,... M-1
At = " "=
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Consider the following approximations

u™t —ur At
o = T ’—?6,2u,”

—2u+ul Ax
1
o2ul = ufy e 84

Therefore, the heat equation
U — DU =0
is approximated as

n+1 n n n n
W —w _DW,+1 2w,+w,71:0
At Ax?

Notice that u is the solution to the exact equations, and w/ is the
solution to the corresponding finite-difference approximation.
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Truncation and Solution Errors

@ Solution Error:

e,n = W,-" - U,-n
@ Truncation Error:
- U/UH*uin_D i+1 2Un+u
! At Ax?
At AX
= o'+ ofu’ - D (62u"+12 ogu ">
Ax?
= ol — DA+ —a Dﬁaﬁu,-”

At Ax2
= ?a? D—a;‘,"
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Solving for /" in

n+1 n n n n
Wim =W p Wi —2wi+wl,

At Ax2 =0

one gets

2D At D At
Wt = (1 - AXz) W'+~ (Wie +wiy)

! Ax?
or
Wi = (1= 2a) wf' + o (wfiy + wly)
where
_ D At
T AX?
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Wit = (1=2a) wf +a (Wi + wiy)

el l

n

u(0,0)=c¢ ! wlL,t=c,

u(x,0)= f(x)
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In matrix notation this is equivalent to w1 = A . w(®) where

a (1-2a) !
! (1-2a) a

! (1 7.204) @
a (1-2a) a

0 1

W1n Cq

W2n f2

Wg f3

W(n) = W(O) —

wp_o fu—2

W fu—1

wry G2
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Stability

Consider a small error in the initial data. Let’s investigate how this
error propagates.

wl — A. (w(m i e«n) —A-wO L A.eO®

2) = A. w(l) — A2 . W(O) + A2 . e(o)

wl

W(n) = A. W(n_l) = A". W(O) + A" . e(o)

A method is said to be stable if
A" e < [le)|
Thus, we must require that

[|A™] <1
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Von Neumann Stability Analysis of FTCS

Substitute w" = ¢" 'k 2% into
Wit = (1= 2a)w + o (Wi + wily)
So,
gntl glking (1-2a)e" elkinx | <€n ol k(i+1) Ax 4en elk(i—1)Ax>
= (1-2a)+a« (e’kAX + e_lkAX)
= 1-2a+2acos(kAx)=1—-2a[l —cos(k Ax)]
¢ = 1—4asin®(kAx/2)

Then [¢| < 1 implies

-1 < 1-4asin®(kAx/2) <1
-2 < —4asin®(kAx/2) <0
1/2 > a>asin®(kAx/2) >0
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Von Neumann Stability Analysis of FTCS

That is, in order to be stable one requires that alpha < 1/2. But since
a = D At/Ax? . This condition implies that

AX?
At < —
= 2D
Notice that At o Ax?; thus, halving the grid-spacing will decrease the

time-step by a factor of 1/4.

Also if
u(x,t) = up e Pt e~ 'kx=a1)
then
ou—DI2u=0
yields p = Dk? and g = 0. Thus,
u(x,t) = up e DKt g—ikx

Notice that diffusion is stronger for large D or small scale features, i.e.
large wave-numbers k.

Kokkotas & Laguna Computational Physics and Astrophysics



In other words, the diffusion time = across a spatial scale X is
ou-DPu=0 - <_pY .o
T A2

thus,
A2
T~ —

D

Therefore, given the condition At < Ax?/D, evolving scales \ > Ax
will require to take number of steps of order

T )2 A2

PSRN
At DAt Ax? >

which could be computationally prohibited.
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Fully Implicit Evolution

Consider the following discretization

n+1 n n+1 n+1 n+1
Wim =W p Wi 2w+ w

At Ax2 =0

| .

w(0.1)=¢, ¢ w(Lt)=c,

o1

Xiq X Xy
u(x,0)= f(x)
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Solving for w/’, we get

(1 -2a)w™! —a (Wi + W) =w)

— DAt
where again a = 3%

A von Neumann stability analysis yields

£ = [1 +4asin? (k Ax/z)} -

That is, |£| < 1 for any step size At. The scheme is unconditionally
stable
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In matrix notation, the implicit update is equivalent to
A - wt) = w where

1 0
—a (1-2a) —«
—« (1-2a) —«
A= :
—a (1-2a) -«
—« (1-2a) -«
0 1
W1n Cq
W2n f2
Wé’ f3
W2 fu—2
Wy -1
wry C2
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@ Therefore, at every step, instead of updating the solution with
w1 — A w(® (explicit update), now one needs to solve the
system A - w1 = w( (implicit update)

@ In spite of been able to take large steps, the implicit update could
be quite expensive.

@ In addition, the fully implicit method is still only first order
accurate in time.

@ Can we design a scheme that is second order accurate in both
space and time with the stability properties of the implicit
method?
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Crank-Nicholson

w —wr o D[ Wi 2w e w L —2w vl
Jr

Wi —Wi 2T i+
At 2 Ax? Ax?
2(1+a)w™ —a (W +w ) =21 —a)w +a (Wi +w )

u(0,1)=c¢, B wlLn=c,

XI 1 XI Xl‘l

u(x,0)= f(x)

Kokkotas & Laguna Computational Physics and Astrophysics



Thin Accretion Disks

@ An accretion disk formes when by
diffuse material orbits a central body.

@ Gravity and losses in angular
momentum causes the material ito spiral
inward towards the central body.

@ Gravitational forces compress the
material causing the emission of
electromagnetic radiation.

@ Accretion disks of young stars and
protostars radiate in the infrared; those
around neutron stars and black holes in
the x-ray.
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@ Accretion condition:

central object < mass flow
central object = angular momentum flow

@ Angular momentum per unit mass:

j=r?w
@ Kepler's 3th law:
GM
W = rT
@ Therefore,
j=vGMr
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Disk Model

Angular ¢

Vertical Z T

'min Radius R ———

Basic Assumptions:

@ We will use cylindrical coordinates
{t,r,¢,z}.

@ We will not include the central object
in the computation. That is
Imin < T < Imax

@ The viscosity in the disk drives the flow of angular momentum

outwards.

@ The size of the disk is much larger than its thickness, i.e. thin disk
@ All physical properties are independent of ¢
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Disk Model

@ z-dependences will be integrated over the disk thickness. For
example,

o= / paz surface mass density
@ Keplerian disk

M

Vo =rw  where w= 3

@ Mass of the disk is much smaller than the mass of the central
object.

27T/ ordr<M
0

@ The orbital speed of a fluid element in the disk is much larger
than the thermal speed.

kt
v¢:rw>> —
m
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Disk Properties

@ Mass Density: p or o

@ Fluid Velocity: Vv = (v, Vi, Vz) = (V, rw, 0)
@ Energy Density: ignored

@ Gas pressure: ignored

@ Disk viscosity: v

@ Disk self-gravity: ignored

@ Central object gravity: M/r
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Mass Conservation

Also known as the continuity equation
Op+V - (pV)=0

In cylindrical coordinates, it reads

1

1
81‘[) —+ 76,‘([)" Vr) = 0

o 1
/ [81/) + ?8,(pr vr)} dz=0

Then

.1
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Angular Momentum Conservation

, 1 , 1
8t(pl) + 7(9,("0] Vr) = _?8I’(rnl’p)

dw
where M, =—-vpr?—
o= VP gy

Integration across the z-direction and substitution mass conservation
equation yields

1 (di\T L (s duw
Vi = E (dr) 8r (I’ Vo Cj[’)

vy = _—308, <r1/21/0)
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We then have
1
oo + 7&(0 rv,)=0

Ve = %8, (r1/2 uo)

to solve for o and v, given a viscosity model for v = v (o, r, t). Notice
that the second equation trivially gives a way to compute the drift
velocity.

Substitution of v, in the mass conservation equation yields

B0 — %a, [r”za, (r‘/2 ya)] —0
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What type of equation is
3 1/2 1/2 _
oo — =0, [r o, (r m)] =0

Define x = 2r'/2 and u = v o r'/2. One gets,

12v

X2 8)2(/1,: 0

Orp —

This is a diffusion equation with diffusion coefficient

12v
D:7

Kokkotas & Laguna Computational Physics and Astrophysics



On the tidal interaction between protoplanets and the protoplanetary
disk, D.N.C. Lin and John Paapaloizou, Astrophysical Journal, vol
309, p 846, y 1986.

@ Viscosity model for solar disks v = o2
@ Tidal interaction

— -3 1/2 1/2
Vr—m@r(f VU)—I—S/\I’

where A is the injection rate of angular momentum by tidal
interaction with the protoplanet.

4
A = sign(r — rp)é ((;p)

where rp is the radial position of the protoplanet, A is the strength
of tidal effects and 6, = Max(H, |r — r,|)
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Therefore
1 -3
810:—?6r(orv,) and v,:m(’)r (r1/203) +3Ar/?
yields
_3 1/2 1/2 3 3/2
8t0_78,{r 5,(/’ J)—/\crr }
or

4
oo = 96, [r”zar (r‘/zas) —sign(r — rp)Ao r'/2 <L> ]
r dp

We need the equation of motion for the protoplanet. In the absence of

the disk, we will assume that the planet moves in circular orbits. That
. ar,
IS —P —

't
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The presence of the disk modifies the protoplanet orbital dynamics as
follows:

drp . 1/2 fmax r 4
W_—SBArp / sign(r—rp)o 67,) ar

I'min
where B is the mass ratio of the disk to the protoplanet.

We will consider the following parameters

A = 1078
B = 20
Imn = 0
Imax = 2
rn, = 08
o = e at t=0
H = 0.05
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1986Ap3 .. .309. .846L

T,

I

s T
foopianet’s oroi
Ao = 20,and

rce
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