Computational Physics and Astrophysics

Numerical Differentiation

Kostas Kokkotas University of Tübingen, Germany

and

Pablo Laguna Georgia Institute of Technology, USA

Spring 2012

Approximating a Derivative

GOAL: Given a set of tabulated values (x_i, y_i) , construct an approximation to the derivative of the function y(x). RECALL:

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{y(x+h) - y(x)}{h}$$

$$= \lim_{h \to 0} \frac{y(x) - y(x-h)}{h}$$

$$= \lim_{h \to 0} \frac{y(x+h) - y(x-h)}{2h}$$

Thus, possible numerical approximation to the derivative are

$$\frac{dy}{dx} \approx \frac{y_{i+1} - y_i}{h}$$

$$\approx \frac{y_i - y_{i-1}}{h}$$

$$\approx \frac{y_{i+1} - y_{i-1}}{2h}$$

where $x_{i+1} - x_i = h$

But,

- What is the error we make by using the numerical approximation?
- What is the best choice?
- Which is grid point location where a given numerical approximation applies?
- How to construct more accurate approximations?
- How about high derivatives?

The tool that we are going to use to answers all of these questions is Taylor series expansions.

$$y(x-x_0) = y_0 + (x-x_0)y_0' + \frac{(x-x_0)^2}{2!}y_0'' + \frac{(x-x_0)^3}{3!}y_0^{(3)} + \frac{(x-x_0)^4}{4!}y_0^{(4)} + \dots$$

Approximating the First Order Derivative

GOAL: Find the numerical approximation to the first order derivative of y(x) at x_i using information at the neighboring points $\{x_{i-2}, x_{i-1}, x_i, x_{i+1}, x_{i+2}\}$

From

$$y(x-x_0) = y_0 + (x-x_0)y_0' + \frac{(x-x_0)^2}{2!}y_0'' + \frac{(x-x_0)^3}{3!}y_0^{(3)} + \frac{(x-x_0)^4}{4!}y_0^{(4)} + \dots$$

we have that

$$y_{i+1} = y_i + h y_i' + \frac{h^2}{2!} y_i'' + \frac{h^3}{3!} y_i^{(3)} + \frac{h^4}{4!} y_i^{(4)} + \dots$$

$$y_{i-1} = y_i - h y_i' + \frac{h^2}{2!} y_i'' - \frac{h^3}{3!} y_i^{(3)} + \frac{h^4}{4!} y_i^{(4)} + \dots$$

$$y_{i+2} = y_i + (2h) y_i' + \frac{(2h)^2}{2!} y_i'' + \frac{(2h)^3}{3!} y_i^{(3)} + \frac{(2h)^4}{4!} y_i^{(4)} + \dots$$

$$y_{i-2} = y_i - (2h) y_i' + \frac{(2h)^2}{2!} y_i'' - \frac{(2h)^3}{3!} y_i^{(3)} + \frac{(2h)^4}{4!} y_i^{(4)} + \dots$$

where
$$x_{i+1} - x_i = h$$

One possibility is then to use

$$y_{i+1} = y_i + h \frac{y_i'}{y_i'} + \frac{h^2}{2!} y_i'' + \frac{h^3}{3!} y_i^{(3)} + \frac{h^4}{4!} y_i^{(4)} + \dots$$

solving for y_i'

$$y'_i = \frac{y_{i+1} - y_i}{h} - \frac{h}{2!}y''_i - \frac{h^2}{3!}y_i^{(3)} - \frac{h^3}{4!}y_i^{(4)} + \dots$$

Notice that at this stage there are no approximations yet since we have kept the infinite sum. It is when we approximate

$$y_i' pprox rac{y_{i+1} - y_i}{h}$$

when an error is introduced.

Therefore, from

$$y'_i = \frac{y_{i+1} - y_i}{h} - \frac{h}{2!}y''_i - \frac{h^2}{3!}y_i^{(3)} - \frac{h^3}{4!}y_i^{(4)} + \dots$$

we have that

$$\left[\frac{dy}{dx}\right]_i = \left[\frac{\Delta y}{\Delta x}\right]_i + \mathcal{E}_i + \dots$$

where

$$\left[\frac{\Delta y}{\Delta x}\right]_i = \frac{y_{i+1} - y_i}{h}$$

is the finite difference approximation to y_i' and

$$\mathcal{E}_i = -\frac{h}{2!}y_i''$$

is the leading truncation error. Notice that in this case $\mathcal{E} \propto \mathcal{O}(h)$. That is, the approximation is first order accurate.

If we use the point x_{i-1} instead, we get

$$y'_i = \frac{y_i - y_{i-1}}{h} + \frac{h}{2!}y''_i - \frac{h^2}{3!}y_i^{(3)} + \frac{h^3}{4!}y_i^{(4)} + \dots$$

thus

$$\left[\frac{dy}{dx}\right]_i = \left[\frac{\Delta y}{\Delta x}\right]_i + \mathcal{E}_i + \dots$$

with

$$\left[\frac{\Delta y}{\Delta x}\right]_i = \frac{y_i - y_{i-1}}{h}$$

and

$$\mathcal{E}_i = \frac{h}{2!} y_i^{"}$$

The error again is $\mathcal{E} \propto \mathcal{O}(h)$.

Finally, if we use both the point and x_{i+1} and x_{i-1} , we have from

$$y_{i+1} = y_i + h y_i' + \frac{h^2}{2!} y_i'' + \frac{h^3}{3!} y_i^{(3)} + \frac{h^4}{4!} y_i^{(4)} + \dots$$

$$y_{i-1} = y_i - h y_i' + \frac{h^2}{2!} y_i'' - \frac{h^3}{3!} y_i^{(3)} + \frac{h^4}{4!} y_i^{(4)} + \dots$$

that

$$y_{i+1} - y_{i-1} = 2 h y_i' - 2 \frac{h^3}{3!} y_i^{(3)} + \dots$$

thus

$$\left[\frac{dy}{dx}\right]_{i} = \left[\frac{\Delta y}{\Delta x}\right]_{i} + \mathcal{E}_{i} + \dots$$

with

$$\left[\frac{\Delta y}{\Delta x}\right]_i = \frac{y_{i+1} - y_{i-1}}{2h}$$

and

$$\mathcal{E}_i = \frac{h^2}{3!} y_i^{(3)}$$

The error in this case is $\mathcal{E} \propto \mathcal{O}(h^2)$, i.e. second order accurate.

Approximating the Second Order Derivative

From

$$y_{i+1} = y_i + h y_i' + \frac{h^2}{2!} y_i'' + \frac{h^3}{3!} y_i^{(3)} + \frac{h^4}{4!} y_i^{(4)} + \dots$$

$$y_{i-1} = y_i - h y_i' + \frac{h^2}{2!} y_i'' - \frac{h^3}{3!} y_i^{(3)} + \frac{h^4}{4!} y_i^{(4)} + \dots$$

one has that

$$y_{i+1} + y_{i-1} = 2 y_i + 2 \frac{h^2}{2!} y_i'' + 2 \frac{h^4}{4!} y_i^{(4)} + \dots$$

then

$$\frac{y_{i+1}-2\,y_i+y_{i-1}}{h^2} = y_i''+\frac{h^2}{12}y_i^{(4)}+\ldots$$

Then

$$\left[\frac{d^2y}{dx^2}\right]_i = \left[\frac{\Delta^2y}{\Delta x^2}\right]_i + \mathcal{E}_i + \dots$$

where

$$\left[\frac{\Delta^2 y}{\Delta x^2}\right]_i = \frac{y_{i+1} - 2 y_i + y_{i-1}}{h^2}$$

and

$$\mathcal{E}_i = \frac{h^2}{12} y_i^{(4)}$$

the approximation is second order accurate.

The approximations that we have constructed so far were found with an educated guess. We need a general procedure that does not involve "guessing."

Consider again the first order derivative. Suppose we are looking for a finite difference approximation at the grid point x_i that involves only information at the grid points x_i and x_{i+1} . That is, we are looking for an expression of the form

$$\left[\frac{\Delta y}{\Delta x}\right]_i = a_1 y_{i+1} + a_0 y_i$$

such that

$$\left[\frac{dy}{dx}\right]_i = \left[\frac{\Delta y}{\Delta x}\right]_i + \mathcal{E}_i$$

with a_0 and a_1 unknown coefficients to be determined.

Substitute in

$$\left[\frac{\Delta y}{\Delta x}\right]_i = a_1 y_{i+1} + a_0 y_i$$

the Taylor expansion of y_{i+1} around x_i . That is,

$$y_{i+1} = y_i + h y_i' + \frac{h^2}{2!} y_i'' + \frac{h^3}{3!} y_i^{(3)} + \dots$$

Then

$$\begin{bmatrix} \frac{\Delta y}{\Delta x} \end{bmatrix}_{i} = a_{1} \left[y_{i} + h y_{i}' + \frac{h^{2}}{2!} y_{i}'' + \frac{h^{3}}{3!} y_{i}^{(3)} + \dots \right] + a_{0} y_{i}
\begin{bmatrix} \frac{dy}{dx} \end{bmatrix}_{i} - \mathcal{E}_{i} = (a_{1} + a_{0}) y_{i} + a_{1} h y_{i}' + a_{1} \left[\frac{h^{2}}{2!} y_{i}'' + \frac{h^{3}}{3!} y_{i}^{(3)} + \dots \right]
y_{i}' - \mathcal{E}_{i} = (a_{1} + a_{0}) y_{i} + a_{1} h y_{i}' + a_{1} \left[\frac{h^{2}}{2!} y_{i}'' + \frac{h^{3}}{3!} y_{i}^{(3)} + \dots \right]
0 = (a_{1} + a_{0}) y_{i} + (a_{1} h - 1) y_{i}' + \mathcal{E}_{i} + a_{1} \left[\frac{h^{2}}{2!} y_{i}'' + \frac{h^{3}}{3!} y_{i}^{(3)} + \dots \right]$$

Since

$$0 = (a_1 + a_0)y_i + (a_1 h - 1)y_i' + \mathcal{E}_i + a_1 \left[\frac{h^2}{2!}y_i'' + \frac{h^3}{3!}y_i^{(3)} + \dots \right]$$

is valid for an arbitrary function y(x), then the only way this expression is satisfied if

$$0 = a_1 + a_0$$

$$0 = a_1 h - 1$$

$$0 = \mathcal{E}_i + a_1 \left[\frac{h^2}{2!} y_i'' + \frac{h^3}{3!} y_i^{(3)} + \dots \right]$$

which yields

$$a_0 = -1/h$$

$$a_1 = 1/h$$

$$\mathcal{E}_i = -\frac{h}{2!}y_i'' + \dots$$

which is the results we derived before

$$\left[\frac{\Delta y}{\Delta x}\right]_i = \frac{y_{i+1} + y_i}{h}$$

Finite Difference Approximations: First Derivative

FD Approximation	Truncation Error	Convergence
$\frac{y_{i+1}-y_{i-1}}{h}$	$\frac{1}{6}h^2y^{(3)}$	Second
$\frac{y_{i+1}-y_i}{h}$	$-\frac{1}{2}hy^{(2)}$	First
$\frac{y_i - y_{i-1}}{h}$	$\frac{1}{2}hy^{(2)}$	First
$\frac{-3y_i+4y_{i+1}-y_{i+2}}{2h}$	$\frac{1}{3}h^2y^{(3)}$	Second
$\frac{y_{i-2} - 8 y_{i-1} + 8y_{i+1} - y_{i+2}}{12 h}$	$\frac{1}{30}h^4y^{(5)}$	Forth

Finite Difference Approximations: Second Derivative

FD Approximation	Truncation Error	Convergence
$\frac{y_{i+1} - 2 y_i + y_{i-1}}{h^2}$	$\frac{1}{12}h^2y^{(4)}$	Second
$\frac{y_i - 2 y_{i+1} + y_{i+2}}{h^2}$	h y ⁽³⁾	First
$\frac{-y_{i-2}+16y_{i-1}-30y_i+16y_{i+1}-y_{i+2}}{12h}$	$\frac{-1}{90}h^4y^{(6)}$	Forth

Richardson Extrapolation

Consider the case of the center finite difference approximation to the second derivative. That is, $y_i'' = D_2(h)_i + \mathcal{E}_i(h)$ where

$$D_2(h)_i = \frac{y_{i+1} - 2 y_i + y_{i-1}}{h^2}$$

and

$$\mathcal{E}(h) = \frac{1}{12}h^2y^{(4)} + \mathcal{O}(h^4) + \mathcal{O}(h^6) + \mathcal{O}(h^8) \dots$$
$$= C_2h^2 + C_4h^4 + C_6h^6 + \dots$$

Evaluate the derivative approximation with h and h/2; that is,

$$y'' = D_2(h) + C_2h^2 + C_4h^4 + ...$$

 $y'' = D_2(h/2) + C_2\left(\frac{h}{2}\right)^2 + C_4\left(\frac{h}{2}\right)^4 + ...$

Multiply the second equation by 4 and subtract the first equation.

$$3y'' = 4D_2(h/2) - D_2(h) + 4C_4\left(\frac{h}{2}\right)^4 - C_4h^4 + \dots$$

$$y'' = \frac{1}{3}\left[4D_2(h/2) - D_2(h)\right] - \frac{3}{4}C_4h^4 + \dots$$

Thus, we have then

$$y'' = D_4(h) + \bar{C}_4 h^4 + \bar{C}_6 h^6 + \dots$$

where now the approximation is given by (notice is 4th order)

$$D_4(h) = \frac{1}{3} \left[4 D_2(h/2) - D_2(h) \right]$$