
1. PHYSICAL & MATHEMATICAL
FORMULATION

T

θ

m

W

O

L

r

1

1.1 Derivation of the equation of motion

T

θ

m

W

O

L

r

• Consider idealized pendulum:

• Mass of bob, m

• Infinitely rigid, massless pendulum rod,
length L

• Forces: Weight: W, tension in rod: T

• No friction at pivot point O (origin of
coordinate system)

• Total mechanical energy (KE + PE) strictly
conserved

• Consider bob’s position vector, r(t)

• r(t) makes an angle ✓(t) with vertical, measured counter-clockwise

• The pendulum moves through two-dimensional space, but because the rod
length, L, is fixed, its motion is completely determined by a knowledge of ✓(t)

2

• I.e. viewing ✓(t) as a “generalized coordinate”, the problem is e↵ectively one

dimensional, and we can use the laws of rotational dynamics, about the origin,
O, to determine the equation of motion for the system

• Recall that the rotational analogues of mass, velocity and acceleration for
translational motion are the moment of inertia, I, angular velocity, !(t),

!(t) ⌘ d✓(t)

dt

and angular acceleration ↵(t),

↵(t) ⌘ d2✓(t)

dt2
=

d!(t)

dt

• The rotational version of Newton’s second law (torques) then tells us

I↵k = r⇥
X

F

where k is the outwards-pointing unit vector normal to the plane of motion

3

• For the pendulum bob, we have I = mL2. Noting that r and T are parallel,
and that r⇥W points inwards, the torque equation gives us

mL2↵k = r⇥W + r⇥T = �Lmg sin ✓ k + 0

so
↵ = �g

L
sin ✓

• The equation of motion for the pendulum, written in the form of a
second-order-in-time di↵erential equation, is therefore

d2✓

dt2
= �g

L
sin ✓ 0  t  t

max

(1)

where we have emphasized that we are interested in modeling the behaviour of
the pendulum over some finite time interval, 0  t  t

max

• Note that the mass of the pendulum bob does not appear in this equation (it
“drops out” of the problem)

4

• This last equation governs the dynamics of the pendulum; it is not su�cient,
however, to tell us precisely what the pendulum will do any time that is set in
motion

• We know that the motion will be di↵erent if we release the pendulum from
di↵erent locations (value of ✓) or give it more or less of a push (value of !) as
we let it go

• That is, we must give initial conditions for the motion, which in this case are

✓(0) = ✓
0

Initial angular displacement of pendulum

!(0) = !
0

Initial angular velocity of pendulum

• Physically, as just mentioned, ✓(0) and !(0), describe from where and with
what angular speed the pendulum is released; at least in an idealized world
these are arbitrary

• Mathematically, the need to give ✓
0

and !
0

reflects the fact that we are solving
a second-order-in-time di↵erential equation, which has a unique solution if and
only if we give two initial conditions

5

1.2 Non-dimensionalization

• Although this may seem strange, it is convenient to choose a system of units
such that g = 1, L = 1; this makes the equation that we need to solve simpler

• Let’s see how this would work for a specific set of initial units and length of
rod: In particular, let’s assume that we are working in MKS units so that
g = 9.8 m/s

2, and that our pendulum has L = 4.9 m

• Then we first define a new unit of length that we will call a rod (not to be
confused with the old Imperial unit having the same name!), so that

1 rod ⌘ 4.9 m

• We then have
L = 1 rod

• Now define a new unit of time, called the tick, so that

1 tick ⌘ 1p
2

s

6

• This implies
1 s ⌘

p
2 tick

• Now we have

g = 9.8
m

s

2

=

9.8 m

s

2

=

2 rod

s

2

=

2 rod

(

p
2 tick)

2

=

2 rod

2 tick

2

= 1

rod

tick

2

• Therefore, in our new set of units we have (suppressing the units themselves)

L = g = 1

• Adopting these units, the simplified version of 1 that we want to solve is

d2✓

dt2
= � sin ✓ 0  t  t

max

(2)

with initial conditions
✓(0) = ✓

0

(3)

!(0) = !
0

(4)

7

• Note: equation (2)

d2✓

dt2
= � sin ✓ 0  t  t

max

is a nonlinear ordinary di↵erential equation (ODE), since sin(✓(t)) is a
nonlinear function of ✓(t).

• Closed form (analytic) solution is possible, but is quite complex.

• Numerical solution is no more di�cult in principle/practice than it is for
the linear case!

• Note: No reason to expect ✓(t) to be restricted in value, e.g. �⇡  ✓(t)  ⇡;
again, in principle, possible range of ✓(t) is

�1 < ✓(t) <1

where we now have to interpret “angle from vertical” as “angle as measured
from equilibrium state of pendulum”, i.e. with ✓ = 0 and ! = 0

8

1.3 Linear limit

• Assume that the angular displacement ✓(t) is very small, ✓(t)⌧ 1

• Then
sin(✓) ⇡ ✓

and (2) becomes
d2✓

dt2
= �✓ 0  t  t

max

(5)

• which has the general solution

✓(t) = A sin(t + �)

where the constants A and � are determined from the initial conditions (3) and
(4).

• This is the usual “pendulum equation/solution” with which you should be
familiar, except that here we are working with the special system of units such
that L = g = 1

9

• Key fact: In linear case, oscillation frequency ⌦ =

p
g/L = 1 with our choice

of units (i.e. ✓(t) = A sin(⌦t + �) with ⌦ = 1), is independent of amplitude, A,
of oscillation, or equivalently, independent of the initial conditions (2) and (3)

• This is not the case for the nonlinear pendulum!

10

2. SOLUTION VIA FINITE DIFFERENCE
APPROXIMATION

T

θ

m

W

O

L

r

11

2.1 Discretization: Step 1—Finite di↵erence grid

• Continuum domain is 0  t  t
max

, replace with grid: example

l = 3

1 2 3 4t 5 6t 7t 8t 9

∆

t tt

t

t

t t

t = t
 = 9n

t = 0
max

• Grid characterized by number of grid points, nt, and grid spacing, �t: as
discussed previously, will specify these implicitly in terms of integer-valued level
parameter, `

nt = 2

`
+ 1

�t =

t
max

nt � 1

= 2

�`t
max

tn = (n� 1)�t, n = 1, 2, . . . , nt

12

2.2 Discretization: Step 2—Derivation of FDA

• Continuum equations ! discrete equations

• Adopt usual finite di↵erence notation for grid functions

✓n ⌘ ✓(tn) ⌘ ✓((n� 1)�t))

(using a superscript, since it is conventional for a time-index, and subsequently
being very careful not to misinterpret, ✓2, with ✓-squared, etc.)

• Have one derivative to replace, use O(�t2) accurate approximation derived
earlier in class

d2✓

dt2

����
t=tn

! ✓n+1 � 2✓n
+ ✓n�1

�t2
(6)

• Important: We view this formula as being applied (“centred”) at the grid
point tn; we thus also make the replacement

sin(✓)! sin(✓n
)

13

• Substituting the approximation (6) of the second derivative in

d2✓

dt2
= � sin ✓ 0  t  t

max

we get our desired FDA:

✓n+1 � 2✓n
+ ✓n�1

�t2
= � sin ✓n n + 1 = 3, 4 . . . nt (7)

• Note that this formula expresses what values n + 1 takes on. We write it in this
way since we are going to view the equation as defining what the value of ✓n+1

(called the “advanced” value) is in terms of ✓n and ✓n�1 (called the “retarded”
values)

14

2.3 Discretization: Step 3—Solution of FDA

• As just stated, we now view equation (7)

✓n+1 � 2✓n
+ ✓n�1

�t2
= � sin ✓n n + 1 = 3, 4, . . . nt

as an equation for ✓n+1, assuming that ✓n and ✓n�1 are known

• Solving for ✓n+1 we have

✓n+1

= 2✓n � ✓n�1 ��t2 sin ✓n n + 1 = 3, 4, . . . nt (8)

• Since ✓�2, ✓�1 and ✓0 are not defined, we can not use (8) to determine
✓1

= ✓(t = 0) and ✓2

= ✓(t = �t)

• The first discrete time at which we can use (8) is tn+1

= t3, and this is
precisely why n + 1 starts at 3 in the formula

• We thus need another way to determine ✓1 and ✓2

15

• ✓1 is given by the initial condition (3) (i.e. the angle of release)

✓1

= ✓(0) = ✓
0

• Determining ✓2 is a bit more involved. We state without proof that in order for
the overall solution to be O(�t2), we must determine ✓2

= ✓(�t) up to and
including terms of O(�t2) (i.e. the leading order error term in ✓(�t) must be
O(�t3))

• Proceed via Taylor series expansion, and use the initial conditions
✓1

= ✓(0) = ✓
0

and !1

= !(0) = !
0

(we also freely choose the initial angular
velocity)

✓(�t) = ✓(0) + �t
d✓

dt
(0) +

1

2

�t2
d2✓

dt2
(0) + O(�t3)

⇡ ✓
0

+ �t !
0

+

1

2

�t2
d2✓

dt2

16

• We now the use the equation of motion (2) to eliminate d2✓/dt2;
i.e. d2✓/dt2 = � sin ✓, so we have

✓(�t) ⇡ ✓
0

+ �t !
0

� 1

2

�t2 sin ✓
0

• Assembling results we have our complete and final set of FD equations

✓n+1

= 2✓n � ✓n�1 ��t2 sin ✓n n + 1 = 3, 4, . . . nt (9)

✓1

= ✓
0

(10)

✓2

= ✓
0

+ �t!
0

� 1

2

�t2 sin ✓
0

(11)

• Note that we have a total of nt equations for the nt unknowns,

✓n, n = 1, 2, . . . , nt

which, of course, is necessary for us to be able to compute all of the ✓n

17

2.4 Convergence—Expected error behaviour
(Extremely Important!!)

• We want to consider the behaviour of our finite di↵erence (numerical) solution
as �t! 0

• We first note that the following applies to essentially any di↵erential equation
that is solved with FDAs, not just the pendulum problem

• Assumption: (following L.F. Richardson, 1909) Let u?(t) be the exact
(continuum) solution of (2-4) Then the error, e(tn), in the numerical solution,
u(tn)

e(tn) ⌘ u?(t
n
)� u(tn)

takes the form

lim

�t!0

e(tn) ⌘ u?(t
n
)� u(tn) = �t2e

2

(tn) + O(�t4) (12)

so the leading order (dominant) term in the error is

�t2e
2

(tn)

18

• To emphasize, the leading order error term is proportional to �t2, so if, for
example we reduce �t in our calculations by a factor of 2, we should expect the
error in the numerical solution to go down by a factor of 4.

• Note: e
2

is a function, just as the exact solution, u is; it is not something
“random”, as would be the case if we were analyzing the error in experimental
data!

• You might ask: Why should we expect equation (12)

lim

�t!0

e(tn) ⌘ u?(t
n
)� u(tn) = �t2e

2

(tn) + O(�t4)

to hold?

• This is a rather deep question and the full answer is beyond the scope of this
course

• However, the crucial observation for us is it can be VERIFIED
empirically!

19

2.5 Convergence testing
(Also extremely important!!)

• Consider a sequence of three finite di↵erence grids with spacings �t, �t/2 and
�t/4 (three levels of discretization)

l + 1

l + 2

l

∆t

• The key idea is to perform the same calculation, i.e. for pendulum problem,
using the same initial values, ✓

0

and !
0

, on the di↵erent grids

• Solutions will vary from level to level; expect more accuracy for smaller �t,
i.e. for increasing level, `

• Note that the grid points in the squares are common to the three computations

20

l + 1

l + 2

l

∆t

• Define
un

` ⌘ soln solution at level `

un
`+1

⌘ soln solution at level ` + 1

un
`+2

⌘ soln solution at level ` + 2

• As just described, as �t! 0 we expect

Solution error ⌘ e(tn) ⌘ u?(t
n
)� u(tn) = �t2e

2

(tn) + O(�t4)

or
u(tn) ⇡ u?(t

n
)��t2e

2

(tn)

21

• Repeating the last equation

u(tn) ⇡ u?(t
n
)��t2e

2

(tn)

• Now, this will hold for any su�ciently small �t

• So, in particular, for the calculations on the level `, ` + 1 and ` + 2 grids we
have

u`(t
n
) ⇡ un

?(tn)� (�t`)
2e

2

(tn)

u`+1

(tn) ⇡ un
?(tn)� (�t`+1

)

2e
2

(tn)

u`+2

(tn) ⇡ un
?(tn)� (�t`+2

)

2e
2

(tn)

where tn is the common set of discrete times tn` (the times on the coarsest grid)

22

• Now consider subtracting solutions on adjacent levels and remember that
�t`+1

= �t`/2; then

u`(t
n
)� u`+1

(tn) ⇡ �
�
(�t`)

2 � (�t`+1

)

2

�
e
2

(tn)

=

✓
(�t`)

2 � 1

4

(�t`)
2

◆
e
2

(tn) = �3

4

�t2`e2

(tn)

u`+1

(tn)� u`+2

(tn) ⇡ �
�
(�t`+1

)

2 � (�t`+2

)

2

�
e
2

(tn)

= �3

4

(�t`+1

)

2e
2

(tn) = � 3

16

(�t`)
2e

2

(tn)

• This development leads to several observations that are crucial when we are
analyzing the error in finite di↵erence approximations

23

• Observe:

• First, simply subtracting 2 solns computed on 2 di↵erent levels gives direct
estimate of solution error (very general result!)

• To see this, note that we have

e(tn) = �t2e
2

(tn) + · · ·

and we have just shown

u`(t
n
)� u`+1

(tn) ⇡ �3

4

(�t`)
2e

2

(tn)

so

�4

3

(u`(t
n
)� u`+1

(tn)) ⇡ e(tn)

24

• Second, if we consider the ratio

u`(t
n
)� u`+1

(tn)

u`+1

(tn)� u`+2

(tn)

then in the limit �t` ! 0, should get

�(3/4)(�t`)
2 e

2

(tn)

�(3/16)(�t`)2 e
2

(tn)

= 4

• Third, and most useful for labs/projects: If we scale (multiply)

u`(t
n
)� u`+1

(tn) by 4

0

= 1

u`+1

(tn)� u`+2

(tn) by 4

1

= 4

u`+2

(tn)� u`+3

(tn) by 4

2

= 16

etc., and plot all the curves as a fcn of tn, the curves should nearly coincide,
and should become more coincident as �t! 0

25

• Fourth, we don’t have to restrict convergence test to 3 levels, can use as
many as possible, but should always do 3-level test at a minimum!

• IMPORTANT! We don’t have to know what the error is to do the
convergence test! (if we did know the error, what would be the point of
doing the numerical calculation?)

• Rather, we assume that the error is given by

u?(t
n
)� u(tn) = �t2e

2

(tn) + . . .

which should be the case provided that we have done the finite di↵erencing
properly, and have correctly implemented the solution of the resulting
algebraic equations in our computer code

26

• We then convergence test by running simulation with di↵erent grid
spacings (levels), and subtract the results computed at successive levels,
and rescale as above

• If we do see near coincidence of the rescaled subtracted values, then we
can have confidence in our numerical solutions, and will also have a good
estimate of the error

• ALSO IMPORTANT! If we do not observe convergence, then we know

that there is some problem with our implementation, and that we need to do
some debugging!

• That is, convergence testing is an extremely powerful tool for developing and
testing finite di↵erence codes

27

2.6 Energy Quantities & Conservation

T

θ

m

W

O

L

r

28

• For systems such as the nonlinear (linear) pendulum, where total (mechanical)
energy is conserved, we can use conservation of energy as an additional check
of the correctness and convergence of our numerical implementation

• For the nonlinear pendulum we have

Kinetic energy ⌘ T (t) =

1

2

mv(t)2 =

1

2

m (L!(t))
2 (13)

Potential energy ⌘ V (t) = mgh(t) (14)

where h(t) is the vertical displacement of the bob/mass relative to its stable
equilibrium position.

• Basic trigonometry tells us that h(t) = L(1� cos ✓(t)) so we have

V (t) = mgh(t) = mgL [1� cos ✓(t)]

29

• Therefore

Total energy ⌘ E(t) = T (t) + V (t) =

1

2

m (L!(t))
2

+ mgL [1� cos ✓(t)] (15)

• Now, in our units, g = L = 1, and we will also take m = 1: can always do this
via further choice of units (what would that choice be?), but in any case, since
both terms are proportional to m, any particular choice of m is irrelevant to the
central issue of how well the finite di↵erence solution conserves energy

• Thus we have

E(t) = T (t) + V (t) =

1

2

!(t)2 + [1� cos ✓(t)]

• In order to check for energy conservation, we can define the deviation in the
total energy relative to the initial time

dE(t) ⌘ E(t)� E(0)

30

• An obvious thing to do is to plot dE(t) vs t to see whether the total energy
“looks” conserved.

• However, a much better idea is to check the convergence of dE(t) which, if our
implementation is correct, should tend to 0 as �t! 0 like O(�t2)

• That is, we should ensure that our calculations display “convergence to
conservation”

• Specifically, using the same type of analysis that we applied to the fundamental
dynamical variable, ✓, we can expect that in the limit �t! 0

dE(tn) = dE?
(tn)��t2F

2

(tn) + . . .

where dE?
(tn) is the continuum (exact) value of dE and F

2

is the leading
order error function for the energy deviation

• However, since the continuum total energy is precisely conserved, we have
dE?

= 0, so we should observe

dE(tn) ⇡ ��t2F
2

(tn)

31

• Thus, if we perform a convergence test, using fixed initial conditions and at
least three levels of discretization, `, ` + 1 and ` + 2, then plots of

dE`(t
n
), 4⇥ dE`+1

(tn) and 16⇥ dE`+2

(tn)

should approach coincidence as ` increases (�t` ! 0)

• Important! Note that formulae (14) and (15) for the potential and total
energies are not valid for the linear pendulum. We can get the correct formula
by using the small angle approximation ✓(t)⌧ 1 and keeping only the
leading-order term.

• From Taylor series of cos ✓ about ✓ = 0 we have

cos ✓ = 1� 1

2

✓2

+ O(✓4

) ⇡ 1� 1

2

✓2

• So we have

E
linear

(t) = T (t) + V (t) =

1

2

!(t)2 +

1

2

✓(t)2

32

3. IMPLEMENTATION IN MATLAB
(See pendulum.m and lpendulum.m)

• Discrete times, tn, and grid functions such as ✓n, !n, Tn, V n and En are all
naturally represented as row vectors in Matlab

t1, t2, ..., tnt ! t(1), t(2), ... t(nt)

✓1, ✓2, ..., ✓nt ! theta(1), theta(2), ... theta(nt)

etc. I.e. the superscript label that identifies the discrete time step maps to the
indexing/addressing of the Matlab vector

• With this “representation”, the translation of the FDA into Matlab code is very
straightforward; specifically

✓n+1

= 2✓n � ✓n�1 ��t2 sin ✓n

becomes

theta(n+1) = 2 * theta(n) - theta(n-1) - deltat^2 * sin(theta(n))

33

Bare-bones code: no comments, tracing
function [t theta omega] = pendulum(tmax, level, theta0, omega0)

nt = 2^level + 1;
t = linspace(0.0, tmax, nt);
theta = zeros(1,nt);
omega = zeros(1,nt);

deltat = t(2) - t(1);

theta(1) = theta0;
theta(2) = theta0 + deltat * omega0 - 0.5 * deltat^2 * sin(theta0);

omega(1) = omega0;

for n = 2 : nt - 1
theta(n+1) = 2 * theta(n) - theta(n-1) - deltat^2 * sin(theta(n));
omega(n) = (theta(n+1) - theta(n-1)) / (2 * deltat);

end

omega(nt) = 2 * omega(nt-1) - omega(nt-2);

end

34

• Note: pendulum also computes and returns an approximation to the angular
velocity, !n, using the O(�t2) FDA for the first time derivative:

!n ⌘ @✓

@t

����
t=tn

! ✓n+1 � ✓n�1

2�t

• We can use this formula for n = 2, 3, . . . , nt � 1

• !1 is given from the initial condition, !1

= !(t = 0) = !
0

• To compute a value for !nt we can use linear extrapolation of the values !nt�1

and !nt�2

• The formula is
!nt

= 2!nt�1 � !nt�2

35

• Derivation of linear extrapolation formula

tn−1 tntn−2

∆ f

∆ f

f n

f n−2

f n−1

∆t ∆t
• From the figure we see that

fn
= fn�1

+ �f = fn�1

+

�
fn�1 � fn�2

�
= 2fn�1 � fn�2

so, with f ! !, n! nt we have

!nt
= 2!nt�1 � !nt�2

36

Full version of code: with comments and tracing

function [t theta omega] = pendulum(tmax, level, theta0, omega0)
% pendulum Solves nonlinear pendulum equation using second order FDA
% as discussed in class.
%
% Input arguments
%
% tmax: (real scalar) Final solution time.
% level: (integer scalar) Discretization level.
% theta0: (real scalar) Initial angular displacement of pendulum.
% omega0: (real scalar) Initial angular velocity of pendulum.
%
% Output arguments
%
% t: (real vector) Vector of length nt = 2^level + 1 containing
% discrete times (time mesh).
% theta: (real vector) Vector of length nt containing computed
% angular displacement at discrete times t(n).
% omega: (real vector) Vector of length nt containing computed
% angular velocity at discrete times t(n).
%%%

% trace controls "tracing" output. Set 0 to disable, non-0 to enable.
trace = 1;
% tracefreq controls frequency of tracing output in main time step loop.
tracefreq = 100;

if trace
fprintf(’In pendulum: Argument dump follows\n’);
tmax, level, theta0, omega0

end

37

% Define number of time steps and create t, theta and omega arrays of
% appropriate size for efficiency (rather than "growing" them element
% by element)
nt = 2^level + 1;
t = linspace(0.0, tmax, nt);
theta = zeros(1, nt);
omega = zeros(1, nt);

% Determine discrete time step from t array.
deltat = t(2) - t(1);

% Initialize first two values of the pendulum’s angular displacement.
theta(1) = theta0;
theta(2) = theta0 + deltat * omega0 - 0.5 * deltat^2 * sin(theta0);

if trace
fprintf(’deltat=%g theta(1)=%g theta(2)=%g\n’,...

deltat, theta(1), theta(2));
end

% Initialize first value of the angular velocity.
omega(1) = omega0;

% Evolve the oscillator to the final time using the discrete equations
% of motion. Also compute an estimate of the angular velocity at
% each time step.
for n = 2 : nt - 1

% This generates tracing output every ’tracefreq’ steps.
if rem(n, tracefreq) == 0

fprintf(’pendulum: Step %g of %g\n’, n, nt);
end

theta(n+1) = 2 * theta(n) - theta(n-1) - deltat^2 * sin(theta(n));

omega(n) = (theta(n+1) - theta(n-1)) / (2 * deltat);

38

end
% Use linear extrapolation to determine the value of omega at the
% final time step.
omega(nt) = 2 * omega(nt-1) - omega(nt-2);

end

39

