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Lecture Notes for PHYS 527 Fall 2007

Deirdre Shoemaker

11 Lecture: Monte Carlo Methods

Qe are. calculafesd
Uniorm randie Se—pli

We have a set of N random points uniformly distributed in a multi-dimensional volume,

V', z1,...zn . The basic Monte Carlo theqrem for the integration of a function, f, over the f

volume V' is given by A: J ,F{X) dx = (b- «)(157 L vaifocnm
/de Vi) £V <f2>N<f> . T oo

(ALK chnha
The angle brackets are the arithmetic mean over the N sample of points an&h\

s\\ N q,wma% lebwe— A wL

11.1 Summary of Simple Monte Carlo Integration -
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112 Random Numbers X € (o,V)

No numerical algorithm can generate a truly random sequence of numbers, but they can
generate repeating sequences of M integers which are fairly good representations of a ran-
domly distributed range of integers from 0 to M — 1. This type of sequences is called
pseudo-random. For practical purposes, we want the program that produces the random
number to be different from and statistically uncorrelated to the program that will use the
random number. Any two different random number generators ought to produce statisti-
cally the same results when coupled to your programs.

The most well-know algorithm for generating random sequences of integers is the linear
congruential method. In this method the nth integer is related to the nth+1 integer by

Ini1 = (AL, + C) mod(M)
where A, C, and M are positive integer constants.

e The first number in the sequence is the ”seed” values and is selected arbitrarily by
the user.
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Table 8.1: Results for I = [ dz1/(1+2?) as function of number of Monte Carlo samples N. The exact
answer is 3.14159F + 00 for the integral and 4.13581F — 01 for the variance with six leading digits.
N I ON
10 3.10263E+00 3.98802E-01
100 3.02933E+00 4.04822E-01
1000 3.13395E+00 4.22881E-01
10000 3.14195E+00 4.11195E-01
100000 3.14003E+00 4.14114E-01
1000000 3.14213E+00 4.13838E-01
10000000 3.14177E+00 4.13523E-01
10° 3.14162E+00 4.13581E-01
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e Each initializing value of seed will produce a different random number or sequence
of random numbers.

e The same seed, however, will produce the same sequence.

e Example: A=7, C=0,and M =10
{'C\Mm\r-b\

Ini1 — Al 10)

sol=3,7,1,9,3,1,....

e These are bad choices of our integers, but exhibits a problem of linear congruential
methods, the recurrence will eventually repeat itself, with a period that is no greater
than M,

e When A, C' and M are properly chosen, the period will be of maximal length.

e All integers between 0 and m-1 will appear at some point so one initial seed is as
good as another (a good thing).

e This method is very fast, but is not very good because it does tend to correlate.

e If using a supplied random number generator, check to make sure it is not linear
congruential method before using it

e Matlab uses different algorithms depending on the version. Type help rand at the
prompt to see which one you are using.

11.3 Distribution Functions

In the last section, we saw how to generate a random number, x, with a uniform probability
density. Now we want take a function of it, y(z).

e Let P(x)dz represent the probability of finding the random variable z in the interval
x to x + dx. P(x) is the probability density. When P = 0, there is no chance that
the variable is in the interval, and P = 1 means it is certain.

e Probability densities are subjected to the normalizing constraint

/m Pla)ds = 1.

—00

e A random variable x, uniformally distributed in the range x1 to xo has a probability
density
1/(xe — 1) ifx; <ax<xo

Pa)dr = { 0 otherwise



e We can construct the variable z to be a random number between x1 and zo by:
x =x1 + (x2 — x1)(random) /(M — 1)

e Let y = f(x) where f is a known function and z is a random variable.

e The probability of = is P,(z). The probability of y will be given by P,(y). There is
a fundamental transformation law of probabilities that just means that probability
is conserved:
| Pe(x)da [=| Py(y)dy | -
This states that the probability of finding x in the interval z to x + dx is the same
as finding y in y to y + dy.
e [t follows that Po(x)
x
P — T\
W)= TR T
where [’ = df /dx .
Example: Poisson Distribution: Consider
¥ if0<y<oo
Py(y) =1 0 otherwise
Let y = f(x) = —In(x) so that |f’| = 1/x. Suppose that
1 ifo<x<1
Pa(w) ={ 0  otherwise
then it follows that Py(y) = ﬁ =2 = e Ywith & = 0 corresponding to y = co and z = 1
toy = 0.

11.4 Rejection Methods

The task we began in the last section with the transformation method was to find a random
variable with arbitrary distributions. The transformation method can be summarized in
the following figure

The transformation method for generating a random deviate, y, from a known distri-



bution p(y). The [ p(y)dy must be known and invertible. A uniform deviate, z (equal to
R), is chosen between 0 and 1. Let y = f(z) = —In(z) so that |f'| = 1/z. Suppose that

1 fo<z<1
P(z) ={ 0 otherwise

then it follows that P(y) = ‘fl,| =z = e Ywith x = 0 corresponding to y = co and z = 1
toy = 0.

Y if0<y<o
P(y) =1 0 otherwise

The rejection method

e a powerful, general technique for generating random deviates with a known distribu-
tion function,

e does not require the computational of the indefinite integral of p(x),
e nor does it require the inverse of p(x).
The rejection method is based on a simple geometrical argument.

1. Draw a graph of the probability distribution, w(x) from a to b that you wish to
generate.

2. If we could choose a random point in 2d with a uniform probability in the area under
the curve, then x would have the desired distribution.

3. Draw a second function, q(x), known as the comparison function in which [ ¢(z)dx
is easily computable and ¢(x) > w(z) for all x.



6.
7.

Imagine a method for choosing a random point in 2d that is uniform in the area
under the comparison function, q(x), (¢ry, Yery)-

. Whenever that point, (Z¢ry, Yry), lies outside of the area under w(z), we reject it and

choice another random point. If it lies within the area under w(x), we accept it.

The accepted points are uniform in the area under the curve.

The fraction of rejected points just depends on the ratio of the area of q(x) to the
area of w(x).

Now we need to find a way to choose a uniform point in 2d under q(x).

1.

Choose a q(x) in which [ ¢(z)dz is known analytically and that is analytically in-
vertible (i.e. transformation method).

Pick a uniform deviate (R1) between 0 and A, where A is the total area under q(x),
y(a) <y <y(b).

Use the transformation method to get x

y(z) = /x q(#)dz + y(a)

. Pick a uniform deviate (Rz2), between 0 and q(x)

0<r<q)

. Reject z if » > w(x) or accept x of r < w(x)

The point (z,r) is uniformally distributed under g(z).



Note there is an alternate method in Garcia:
1. pick the second deviate, Ro, between 0 and 1.

2. Accept or reject according to whether it is less than or greater to w(x)/q(x).

11.5 Application: Relativistic Maxwell-Boltzmann Distribution

We are going to investigate a program that constructs a random variable, v with a proba-
bility distribution given by a Relativistic Maxwell-Boltzmann Distribution

w(y) = Kzoéa)v(W? — 1)1 2em

where K3 is the modified Bessel function and o = mc?/kT. This distribution is used quite
frequently, for example in the kinetic theory of gases. When studying something with such
a large number of particles, it is more useful to use statistical mechanics to understand the
mean behavior instead of the instantaneous state of a single particle.

Set up the comparison function as ¢(y) = Wy, then

Y
y(ﬁ)/) = A wmazd’)/ = Wmax (7 - 1)



