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Introduction

@ A differential equation involving more than one independent
variable is called a partial differential equation (PDE)

@ Many problems in applied science, physics and engineering are
modeled mathematically with PDE.

@ We will mostly focus on finite-difference methods to solve
numerically PDEs.

@ PDEs are classified as one of three types, with terminology
borrowed from the conic sections on the basis of their
characteristics, or curves of information propagation.

@ In geometry, we represent conic sections for a 2nd-degree
polynomial in x and y
Ax?2 +Bxy + Cy* + D=0

the graph is a quadratic curve, and when

e B2 —4AC < 0the curve is a ellipse,
e B? —4AC = 0 the curve is a parabola
e B2 —4AC > 0 the curve is a hyperbola
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Similarly, given

& &) &%) oY 9P\ _
A@)(2+88X8y+06}/2+D(X’y7w78)(78)() =0

where A, B and C are constants. There are 3 types of equations:

@ If B2 — 4AC < 0, the equation is called elliptic,
e If B2 — 4AC = 0, the equation is called parabolic
@ If B2 — 4AC > 0, the equation is called hyperbolic

The classification can be extended to PDEs in more than two
dimensions.
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Two classic examples of elliptic PDEs are the Laplace and Poisson

equations:
V2p=0 and V¢ =p
where in 3D
0? 0? 0?
2 _ Y 47
Ve o= 8x2+8y2+8z2
2 2
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Boundary-value Problem

V2¢ =p inadomain Q

Boundary Conditions
@ Dirichlet: ¢ = by on 99

° Neumann 92 = h-V¢ = b on 0Q
@ Robin: +a¢—n V¢ = bz on 09
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Classic examples of hyperbolic PDEs are:

1 82¢

e V2¢ = 0 wave equation
0 . .
Bf +V-V¢ = 0 advection equation

where v is the speed of the wave propagation (v = c for light waves).
For advection, a scalar field, ¢, is advected by a velocity field V.
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Classic example of parabolic PDEs are

% —-V-(DV¢) = 0 diffusion equation
% —aV?p = 0 heatequation
% +v.-J = 0 continuity equation
J = —DV¢ Fickss first law

where J is the diffusion flux, the amount of substance that flows
through a small area of a small time interval. D is the diffusion
coefficient, v is the concentration and x is the position. Ficke’s first
law tells us about diffusion in a steady state, i.e. flux goes from
regions of high concentration to regions of low concentration
proportional to the concentration gradient.
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Advection or Convection Equation

@ Let’s consider the 1D case
Oip+voxp=0

with v = const > 0, t > 0 and
x €[0,1]

@ Initial data: ¢(0, x) = ¢o(x)

@ Boundary conditions:

o(t,0) = «(t) and
o(t, 1) = B(t)

@ Solutions to this equation
have the form
o(t,x) = p(x — vi)

@ Therefore, the solution ¢(t, x)
is constant along the lines
x — vt = const called
characteristics
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Forward-Time Center-Space (FTCS) Discretization

@ Let’s consider the following discretization of the differential

operators
P — pn
no_ i i
8,q5, Al + O(At)
n In—H - In—‘] 2
8x¢/ = T oAx + O(AX )

where we have used the notation ¢ = #(t", x;)
@ Therefore, the finite difference approximation to 9;¢ + voxp =0

is _ _
(6" = 9p) , , (a — 1)
At 2 Ax
@ Notice that we are making a distinction between the solution
o(t, x) to the continuum equation and ¢{ the solution to the
discrete equation.

=0
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Solving B B
(o7t — M) (o4 — o1 4)
At YT 2ax

for J>§7+1, one gets the following relationship to update the solution

- I -
ot =] - 5C (61 — of-1)
where C = Atv/Ax

/N
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