
Computational Physics
Partial Differential Equations

Lectures based on course notes by Pablo Laguna and Kostas
Kokkotas

revamped by Deirdre Shoemaker

Spring 2014

Kokkotas, Laguna & Shoemaker Computational Physics



Introduction

A differential equation involving more than one independent
variable is called a partial differential equation (PDE)
Many problems in applied science, physics and engineering are
modeled mathematically with PDE.
We will mostly focus on finite-difference methods to solve
numerically PDEs.
PDEs are classified as one of three types, with terminology
borrowed from the conic sections on the basis of their
characteristics, or curves of information propagation.
In geometry, we represent conic sections for a 2nd-degree
polynomial in x and y

Ax2 + Bxy + Cy2 + D = 0

the graph is a quadratic curve, and when
B2 − 4AC < 0 the curve is a ellipse,
B2 − 4AC = 0 the curve is a parabola
B2 − 4AC > 0 the curve is a hyperbola
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Similarly, given
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where A, B and C are constants. There are 3 types of equations:

If B2 − 4AC < 0, the equation is called elliptic,
If B2 − 4AC = 0, the equation is called parabolic
If B2 − 4AC > 0, the equation is called hyperbolic

The classification can be extended to PDEs in more than two
dimensions.
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Two classic examples of elliptic PDEs are the Laplace and Poisson
equations:

∇2φ = 0 and ∇2φ = ρ

where in 3D
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Boundary-value Problem

∇2φ = ρ in a domain Ω

Boundary Conditions

Dirichlet: φ = b1 on ∂Ω

Neumann: ∂φ
∂n = n̂ · ∇φ = b2 on ∂Ω

Robin: ∂φ
∂n + αφ = n̂ · ∇φ = b3 on ∂Ω
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Classic examples of hyperbolic PDEs are:

− 1
v2
∂2φ

∂t2 +∇2φ = 0 wave equation

∂φ

∂t
+ ~V · ∇φ = 0 advection equation

where v is the speed of the wave propagation (v = c for light waves).
For advection, a scalar field, φ, is advected by a velocity field ~V .
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Classic example of parabolic PDEs are

∂φ

∂t
−∇ · (D∇φ) = 0 diffusion equation

∂φ

∂t
− α∇2φ = 0 heat equation

∂φ

∂t
+∇ · ~J = 0 continuity equation

~J = −D∇φ Fick’s first law

where ~J is the diffusion flux, the amount of substance that flows
through a small area of a small time interval. D is the diffusion
coefficient, ψ is the concentration and x is the position. Ficke’s first
law tells us about diffusion in a steady state, i.e. flux goes from
regions of high concentration to regions of low concentration
proportional to the concentration gradient.
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Advection or Convection Equation

Let’s consider the 1D case

∂tφ+ v ∂xφ = 0

with v = const > 0, t ≥ 0 and
x ∈ [0,1]

Initial data: φ(0, x) = φ0(x)

Boundary conditions:
φ(t ,0) = α(t) and
φ(t ,1) = β(t)
Solutions to this equation
have the form
φ(t , x) = φ(x − v t)
Therefore, the solution φ(t , x)
is constant along the lines
x − v t = const called
characteristics
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Forward-Time Center-Space (FTCS) Discretization

Let’s consider the following discretization of the differential
operators

∂tφ
n
i =

φn+1
i − φn

i

∆t
+ O(∆t)

∂xφ
n
i =

φn
i+1 − φn

i−1

2 ∆x
+ O(∆x2)

where we have used the notation φn
i ≡ φ(tn, xi )

Therefore, the finite difference approximation to ∂tφ+ v ∂xφ = 0
is

(φ̄n+1
i − φ̄n
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Notice that we are making a distinction between the solution
φ(t , x) to the continuum equation and φ̄n

i the solution to the
discrete equation.
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Solving
(φ̄n+1
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i−1)

2 ∆x
= 0

for φ̄n+1
i , one gets the following relationship to update the solution

φ̄n+1
i = φ̄n

i −
1
2
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)
where C ≡ ∆t v/∆x
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