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Advection or Convection Equation

@ Let’s consider the 1D case
Oip+voxp=0

with v = const > 0, t > 0 and
x €[0,1]

@ Initial data: ¢(0, x) = ¢o(x)

@ Boundary conditions:

o(t,0) = «(t) and
o(t, 1) = B(t)

@ Solutions to this equation
have the form
o(t,x) = p(x — vi)

@ Therefore, the solution ¢(t, x)
is constant along the lines
x — vt = const called
characteristics
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0,,0) = a(r,)

#(0,x,) =, (x;)




Forward-Time Center-Space (FTCS) Discretization

@ Let’s consider the following discretization of the differential

operators
P — pn
no_ i i
8,q5, Al + O(At)
n In—H - In—‘] 2
8x¢/ = T oAx + O(AX )

where we have used the notation ¢ = #(t", x;)
@ Therefore, the finite difference approximation to 9;¢ + voxp =0

is _ _
(6" = 9p) , , (a — 1)
At 2 Ax
@ Notice that we are making a distinction between the solution
o(t, x) to the continuum equation and ¢{ the solution to the
discrete equation.

=0
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Solving B B
(o7t — M) (o4 — o1 4)
At YT 2ax

for J>§7+1, one gets the following relationship to update the solution

- I -
ot =] - 5C (61 — of-1)
where C = Atv/Ax

/N
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Stability

@ The tendency for any perturbation in the numerical solution to
decay.

@ That is, given a discretization scheme, we need to evaluate the
degree to which errors introduced at any stage of the
computation will grow or decay.

@ We are then concerned with the behavior of the solution error
& =7 — 3

@ Substitution of ¢ = ¢ — ¢ into
- N -
ot =g - 5C (01 — &i-1)
yields

1
n+1 n+1 _ .n n n n n n
o €T =¢) —€ — EC (o4 — €l — Oy + €l 4)
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@ Substitute the following Taylor expansions

™ = @7+ Atdg! + O(AR)
Oy = Of £ Axxg] + O(Ax?)
@ Then
Of + Dt — e = o — €]
_%c (07 + Ax Oxpf — €y — o7 + DX Ox 9] + €] )
or
Atord] — " = €] — %C (2AX 0] — efq +€ly)
G = 1C (e — ly) + DL — C X,
e,’-7+1 =¢l — %C (€7+1 — 6?71) + At (0] — v Oxol)
et = - %C (€1 — €4)
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@ That is, the solution error satisfies also the discrete finite
differences approximation

1
n+1 _ _n n n
& =€ - EC (€i+1 - 6:'—1)

@ Von Neumann stability analysis: Assume that the errors satisfy a
“separation-of-variables” of the form

6,’-7 — §”e”‘f _ fn eIkij

where [ = /-1, k =27/ and £ is a complex amplitude. The n
in £" is understood to be a power.

@ The condition of stability is |¢| < 1 for all k.
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Substitution of €7 = ¢" e/¥AX7into the finite difference equation yields

gn1 gl kAXi _ en gl kAXI _ 10 <§n ol K AX (i+1) _ ¢n e/kAx(iq))
2

§n+1 —en %C (gn el kax _ ¢n e—lkAx)

£=1-— %C (eIkAx _ e—IkAx)

E=1- %Clein(kAx)
¢ =1—-1C sin(k Ax)

€2 =1+ C? sin® (k Ax)

Therefore FTCS discretization applied to the advection equation is
unstable.
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Forward-Time Forward-Space (FTFS) Discretization

Approximate the advection equation as

@ =ap) G =)

At Ax 0

thus B B B _
o7 =] — C (o1 — 4f)
where C = Atv/Ax

N

X\ 1 X\ X" 1
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FTFS Stability

Substitute ! = ¢" e/ A% into
e = (14 C)e! — Cel.
§n+1 eIkAxi _ (1 + C)fn eIkAxi _ an eIkAX(I'-H)

£n+1 _ (1 + C)fn* Cfne/kAX
{=(1+C)—Cek#

|£|2 _ [(1 + C) _ CelkAX] [(1 + C) . CeflkAx}

€= (14 C)2+ C? — (1+ C)C (/K" + e 'kAY)
€2 =1+ C)2+C?—2(1+ C)C cos (k Ax)
I€2=14+2(1+ C)C [1 —cos(k Ax)] > 1

the method is unstable
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Forward-Time Backward-Space (FTFS) Discretization

Approximate the advection equation as

(@M =0 (-9 4)
At VT ax 0

thus ~ B _ B
¢ =] — C (8] — d1y)
where C = Atv/Ax

/

X1 X Xioy
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FTBS Stability

Substitute ! = ¢" e/ k2% into

M =(1-C)e +Cel

€n+1 eIkAxi _ (1 _ C)fn eIkAxi + an eIkAx(i71)
§n+1 _ (1 _ C)gn + an eflkAX
E=(1-C)+Ce kA~

€ = [(1 =€)+ Ce /&% [(1 - €) + Celka]
€F = (1= CY+ C*+ (1 - C)C ("™ - e7'k2)
€2 =(1-C)®+ C?+2(1 — C)C cos (k Ax)

€2 =1-2(1 - C)C [1 — cos (k Ax)]
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Given
£2P=1-2(1-C)C[1—cos(kAx)]

in order to have [£|? < 1

-1<1-2(1-C)C[1—cos(kAx)] <A1
—2<-2(1-C)C[1 —cos(kAx)] <0
1>(1-C)C[1—-cos(kAx)]>0

thus

1-C
C
v At
Ax
Thus for stablility we need to pick a time-step

NP
4

0
1

1

IN IV

IN
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The stablility condition

A< BX
v

implies that the numerical characteristics are contained within the
physical characteristics since

At 1
— < -
Ax — v
Ifl\—wm‘i
v Y4 !—ﬂ,\’:musr
7.7 Ax
//
tn'l-]
e
P Ar
s //
A
/s 4 A
1 / /
tn 7
// /
/
xi-1 xi Xi+1
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How does FTBS prevent the onset of instabilities?

Recall
¢t =o' = C (o] — o]1)
where C = Atv/Ax. Substitute

At?
oM = 7+ AtOd! + —— a,2¢, + O(AR)
2
G, = & — AXed) +A—Xa?¢, + O(AX?)

then

O + At Dyl LA 82¢, 7

Ax?
—C |0] = of + Dx0x0] — —— 50]
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Then

At2 At Ax?

AX
O+ —- 3t¢——V[5x¢—28§¢]
AX
Orp + v8x¢+ afa:— a§¢:0
but from 9;¢ = —v dx¢ we have that

026 = —v Didxd = —v Dxhd = V2 2

thus
3t¢+VaX¢+V2At82(Z5— —a% 0
By + v Do + <v %— A2X> 826 =0
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a@+v@¢+<ﬁgtf¥)a%_o

At

Ax
Ot + V Oy — v (1 - vA)() 2p=0

O+ v Oy — v%m ~C)Rs=0

This equation has the form
Op+vxd —adip=0
advection-diffusion equation with
Ax

Recall that for stability C < 1, thus o > 0.
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Given
(b(t, X) _ ¢0 e—pt e—ik(x—qt)

Substitution into

Oip+vokp=0 = p=0 q=v
o+ Vvixp—ad?p=0 = p=ak® g=v dissipation

o+ Vvixp—B33p=0 = p=0 qg=v—pk* dispersion

@ That is, the FTBS discretization introduces artificial numerical
dissipation to prevent the growth of instabilities.

@ Notice that the dissipation coefficient o oc At.
@ Therefore, in the continuum limit limay_oa =0
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