Computational Physics

Partial Differential Equations

Lectures based on course notes by Pablo Laguna and Kostas Kokkotas

revamped by Deirdre Shoemaker

Spring 2014

Advection or Convection Equation

Let's consider the 1D case

$$\partial_t \phi + \mathbf{v} \, \partial_{\mathbf{x}} \phi = \mathbf{0}$$

with v = const > 0, $t \ge 0$ and $x \in [0, 1]$

- Initial data: $\phi(0, x) = \phi_0(x)$
- Boundary conditions: $\phi(t,0) = \alpha(t)$ and $\phi(t,1) = \beta(t)$
- Solutions to this equation have the form $\phi(t, x) = \phi(x vt)$
- Therefore, the solution φ(t, x) is constant along the lines
 x v t = const called
 characteristics

Forward-Time Center-Space (FTCS) Discretization

Let's consider the following discretization of the differential operators

$$\partial_t \phi_i^n = \frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + O(\Delta t)$$

$$\partial_x \phi_i^n = \frac{\phi_{i+1}^n - \phi_{i-1}^n}{2 \Delta x} + O(\Delta x^2)$$

where we have used the notation $\phi_i^n \equiv \phi(t^n, x_i)$

• Therefore, the finite difference approximation to $\partial_t \phi + v \, \partial_x \phi = 0$ is

$$\frac{(\bar{\phi}_i^{n+1} - \bar{\phi}_i^n)}{\Delta t} + v \frac{(\bar{\phi}_{i+1}^n - \bar{\phi}_{i-1}^n)}{2 \Delta x} = 0$$

• Notice that we are making a distinction between the solution $\phi(t,x)$ to the continuum equation and $\bar{\phi}_i^n$ the solution to the discrete equation.

Solving

$$\frac{(\bar{\phi}_i^{n+1} - \bar{\phi}_i^n)}{\Delta t} + v \frac{(\bar{\phi}_{i+1}^n - \bar{\phi}_{i-1}^n)}{2 \Delta x} = 0$$

for $\bar{\phi}_i^{n+1}$, one gets the following relationship to update the solution

$$\bar{\phi}_{i}^{n+1} = \bar{\phi}_{i}^{n} - \frac{1}{2}C\left(\bar{\phi}_{i+1}^{n} - \bar{\phi}_{i-1}^{n}\right)$$

where $C \equiv \Delta t v / \Delta x$

Stability

- The tendency for any perturbation in the numerical solution to decay.
- That is, given a discretization scheme, we need to evaluate the degree to which errors introduced at any stage of the computation will grow or decay.
- We are then concerned with the behavior of the solution error

$$\epsilon_i^{\it n}=\phi_i^{\it n}-\bar\phi_i^{\it n}$$

• Substitution of $\bar{\phi}_i^n = \phi_i^n - \epsilon_i^n$ into

$$\bar{\phi}_{i}^{n+1} = \bar{\phi}_{i}^{n} - \frac{1}{2}C\left(\bar{\phi}_{i+1}^{n} - \bar{\phi}_{i-1}^{n}\right)$$

yields

$$\phi_{i}^{n+1} - \epsilon_{i}^{n+1} = \phi_{i}^{n} - \epsilon_{i}^{n} - \frac{1}{2}C\left(\phi_{i+1}^{n} - \epsilon_{i+1}^{n} - \phi_{i-1}^{n} + \epsilon_{i-1}^{n}\right)$$

Substitute the following Taylor expansions

$$\phi_i^{n+1} = \phi_i^n + \Delta t \, \partial_t \phi_i^n + O(\Delta t^2)$$

$$\phi_{i\pm 1}^n = \phi_i^n \pm \Delta x \, \partial_x \phi_i^n + O(\Delta x^2)$$

Then

$$\begin{aligned} \phi_i^n + \Delta t \, \partial_t \phi_i^n - \epsilon_i^{n+1} &= \phi_i^n - \epsilon_i^n \\ -\frac{1}{2} C \left(\phi_i^n + \Delta x \, \partial_x \phi_i^n - \epsilon_{i+1}^n - \phi_i^n + \Delta x \, \partial_x \phi_i^n + \epsilon_{i-1}^n \right) \end{aligned}$$

or

$$\begin{split} & \Delta t \, \partial_t \phi_i^n - \epsilon_i^{n+1} = -\epsilon_i^n - \frac{1}{2} C \, \left(2 \, \Delta x \, \partial_x \phi_i^n - \epsilon_{i+1}^n + \epsilon_{i-1}^n \right) \\ & \epsilon_i^{n+1} = \epsilon_i^n - \frac{1}{2} C \, \left(\epsilon_{i+1}^n - \epsilon_{i-1}^n \right) + \Delta t \, \partial_t \phi_i^n - C \, \Delta x \, \partial_x \phi_i^n \\ & \epsilon_i^{n+1} = \epsilon_i^n - \frac{1}{2} C \, \left(\epsilon_{i+1}^n - \epsilon_{i-1}^n \right) + \Delta t \, \left(\partial_t \phi_i^n - v \, \partial_x \phi_i^n \right) \\ & \epsilon_i^{n+1} = \epsilon_i^n - \frac{1}{2} C \, \left(\epsilon_{i+1}^n - \epsilon_{i-1}^n \right) \end{split}$$

 That is, the solution error satisfies also the discrete finite differences approximation

$$\epsilon_i^{n+1} = \epsilon_i^n - \frac{1}{2}C\left(\epsilon_{i+1}^n - \epsilon_{i-1}^n\right)$$

 Von Neumann stability analysis: Assume that the errors satisfy a "separation-of-variables" of the form

$$\epsilon_i^n = \xi^n e^{i x_j} = \xi^n e^{i k \Delta x j}$$

where $I = \sqrt{-1}$, $k = 2\pi/\lambda$ and ξ is a complex amplitude. The n in ξ^n is understood to be a power.

• The condition of stability is $|\xi| \le 1$ for all k.

Substitution of $\epsilon_i^n = \xi^n e^{i k \Delta x i}$ into the finite difference equation yields

$$\xi^{n+1} e^{Jk \Delta x i} = \xi^n e^{Jk \Delta x i} - \frac{1}{2} C \left(\xi^n e^{Jk \Delta x (i+1)} - \xi^n e^{Jk \Delta x (i-1)} \right)$$

$$\xi^{n+1} = \xi^n - \frac{1}{2} C \left(\xi^n e^{Jk \Delta x} - \xi^n e^{-Jk \Delta x} \right)$$

$$\xi = 1 - \frac{1}{2} C \left(e^{Jk \Delta x} - e^{-Jk \Delta x} \right)$$

$$\xi = 1 - \frac{1}{2} C 2J \sin(k \Delta x)$$

$$\xi = 1 - JC \sin(k \Delta x)$$

$$|\xi|^2 = 1 + C^2 \sin^2(k \Delta x)$$

Therefore FTCS discretization applied to the advection equation is unstable.

Forward-Time Forward-Space (FTFS) Discretization

Approximate the advection equation as

$$\frac{(\bar{\phi}_i^{n+1} - \bar{\phi}_i^n)}{\Delta t} + v \frac{(\bar{\phi}_{i+1}^n - \bar{\phi}_i^n)}{\Delta x} = 0$$

thus

$$\bar{\phi}_i^{n+1} = \bar{\phi}_i^n - C \left(\bar{\phi}_{i+1}^n - \bar{\phi}_i^n \right)$$

where $C \equiv \Delta t v / \Delta x$

FTFS Stability

Substitute
$$\epsilon_i^n = \xi^n e^{l k \Delta x i}$$
 into

$$\begin{split} & \epsilon_{i}^{n+1} = (1+C)\epsilon_{i}^{n} - C\,\epsilon_{i+1}^{n} \\ & \xi^{n+1}\,e^{I\,k\,\Delta x\,i} = (1+C)\xi^{n}\,e^{I\,k\,\Delta x\,i} - C\,\xi^{n}\,e^{I\,k\,\Delta x\,(i+1)} \\ & \xi^{n+1} = (1+C)\xi^{n} - C\,\xi^{n}\,e^{I\,k\,\Delta x} \\ & \xi = (1+C) - C\,e^{I\,k\,\Delta x} \\ & |\xi|^{2} = \left[(1+C) - C\,e^{I\,k\,\Delta x} \right] \left[(1+C) - C\,e^{-I\,k\,\Delta x} \right] \\ & |\xi|^{2} = (1+C)^{2} + C^{2} - (1+C)C\,(e^{I\,k\,\Delta x} + e^{-I\,k\,\Delta x}) \\ & |\xi|^{2} = (1+C)^{2} + C^{2} - 2\,(1+C)C\,\cos{(k\,\Delta x)} \\ & |\xi|^{2} = 1 + 2\,(1+C)C\,\left[1 - \cos{(k\,\Delta x)} \right] \geq 1 \end{split}$$

the method is unstable

Forward-Time Backward-Space (FTFS) Discretization

Approximate the advection equation as

$$\frac{(\bar{\phi}_i^{n+1} - \bar{\phi}_i^n)}{\Delta t} + v \frac{(\bar{\phi}_i^n - \bar{\phi}_{i-1}^n)}{\Delta x} = 0$$

thus

$$\bar{\phi}_{i}^{n+1} = \bar{\phi}_{i}^{n} - C \left(\bar{\phi}_{i}^{n} - \bar{\phi}_{i-1}^{n} \right)$$

where $C \equiv \Delta t v / \Delta x$

FTBS Stability

Substitute
$$\epsilon_i^n = \xi^n e^{i k \Delta x i}$$
 into

$$\begin{split} & \epsilon_i^{n+1} = (1-C)\epsilon_i^n + C\,\epsilon_{i-1}^n \\ & \xi^{n+1}\,e^{l\,k\,\Delta x\,i} = (1-C)\xi^n\,e^{l\,k\,\Delta x\,i} + C\,\xi^n\,e^{l\,k\,\Delta x\,(i-1)} \\ & \xi^{n+1} = (1-C)\xi^n + C\,\xi^n\,e^{-l\,k\,\Delta x} \\ & \xi = (1-C) + C\,e^{-l\,k\,\Delta x} \\ & |\xi|^2 = \left[(1-C) + C\,e^{-l\,k\,\Delta x} \right] \left[(1-C) + C\,e^{l\,k\,\Delta x} \right] \\ & |\xi|^2 = (1-C)^2 + C^2 + (1-C)C\,(e^{l\,k\,\Delta x} + e^{-l\,k\,\Delta x}) \\ & |\xi|^2 = (1-C)^2 + C^2 + 2(1-C)C\,\cos{(k\,\Delta x)} \\ & |\xi|^2 = 1 - 2(1-C)C\,\left[1 - \cos{(k\,\Delta x)} \right] \end{split}$$

Given

$$|\xi|^2 = 1 - 2(1 - C)C[1 - \cos(k \Delta x)]$$

in order to have $|\xi|^2 \leq 1$

$$\begin{aligned} -1 &\leq 1 - 2(1 - C)C \left[1 - \cos(k \, \Delta x) \right] \leq 1 \\ -2 &\leq -2(1 - C)C \left[1 - \cos(k \, \Delta x) \right] \leq 0 \\ 1 &\geq (1 - C)C \left[1 - \cos(k \, \Delta x) \right] \geq 0 \end{aligned}$$

thus

$$\begin{array}{ccc}
1 - C & \geq & 0 \\
C & \leq & 1 \\
\frac{v \Delta t}{\Delta x} & \leq & 1
\end{array}$$

Thus for stablility we need to pick a time-step

$$\Delta t \leq \frac{\Delta x}{v}$$

The stablility condition

$$\Delta t \leq \frac{\Delta x}{v}$$

implies that the <u>numerical</u> characteristics are contained within the <u>physical</u> characteristics since

$$\frac{\Delta t}{\Delta x} \leq \frac{1}{v}$$

How does FTBS prevent the onset of instabilities?

Recall

$$\phi_{i}^{n+1} = \phi_{i}^{n} - C \left(\phi_{i}^{n} - \phi_{i-1}^{n} \right)$$

where $C \equiv \Delta t v / \Delta x$. Substitute

$$\phi_i^{n+1} = \phi_i^n + \Delta t \, \partial_t \phi_i^n + \frac{\Delta t^2}{2} \, \partial_t^2 \phi_i^n + O(\Delta t^3)$$

$$\phi_{i-1}^n = \phi_i^n - \Delta x \, \partial_x \phi_i^n + \frac{\Delta x^2}{2} \, \partial_x^2 \phi_i^n + O(\Delta x^3)$$

then

$$\begin{split} \phi_i^n + \Delta t \, \partial_t \phi_i^n + \frac{\Delta t^2}{2} \, \partial_t^2 \phi_i^n &= \phi_i^n \\ - C \left[\phi_i^n - \phi_i^n + \Delta x \, \partial_x \phi_i^n - \frac{\Delta x^2}{2} \, \partial_x^2 \phi_i^n \right] \end{split}$$

Then

$$\begin{split} & \Delta t \, \partial_t \phi + \frac{\Delta t^2}{2} \, \partial_t^2 \phi = -v \frac{\Delta t}{\Delta x} \, \left[\Delta x \, \partial_x \phi - \frac{\Delta x^2}{2} \, \partial_x^2 \phi \right] \\ & \partial_t \phi + \frac{\Delta t}{2} \, \partial_t^2 \phi = -v \, \left[\partial_x \phi - \frac{\Delta x}{2} \, \partial_x^2 \phi \right] \\ & \partial_t \phi + v \, \partial_x \phi + \frac{\Delta t}{2} \, \partial_t^2 \phi - v \frac{\Delta x}{2} \, \partial_x^2 \phi = 0 \end{split}$$

but from $\partial_t \phi = -v \partial_x \phi$ we have that

$$\partial_t^2 \phi = -\mathbf{v} \, \partial_t \partial_x \phi = -\mathbf{v} \, \partial_x \partial_t \phi = \mathbf{v}^2 \, \partial_x^2 \phi$$

thus

$$\begin{split} \partial_t \phi + v \, \partial_x \phi + v^2 \frac{\Delta t}{2} \, \partial_x^2 \phi - v \frac{\Delta x}{2} \, \partial_x^2 \phi &= 0 \\ \partial_t \phi + v \, \partial_x \phi + \left(v^2 \frac{\Delta t}{2} - v \frac{\Delta x}{2} \right) \, \partial_x^2 \phi &= 0 \end{split}$$

$$\begin{split} \partial_t \phi + v \, \partial_x \phi + \left(v^2 \frac{\Delta t}{2} - v \frac{\Delta x}{2} \right) \, \partial_x^2 \phi &= 0 \\ \partial_t \phi + v \, \partial_x \phi - v \frac{\Delta x}{2} \left(1 - v \frac{\Delta t}{\Delta x} \right) \, \partial_x^2 \phi &= 0 \\ \partial_t \phi + v \, \partial_x \phi - v \frac{\Delta x}{2} \left(1 - C \right) \, \partial_x^2 \phi &= 0 \end{split}$$

This equation has the form

$$\partial_t \phi + \mathbf{v} \, \partial_{\mathbf{x}} \phi - \alpha \, \partial_{\mathbf{x}}^2 \phi = \mathbf{0}$$

advection-diffusion equation with

$$\alpha \equiv v \frac{\Delta x}{2} (1 - C)$$

Recall that for stability $C \le 1$, thus $\alpha \ge 0$.

Given

$$\phi(t,x) = \phi_0 e^{-pt} e^{-i k(x-qt)}$$

Substitution into

$$\partial_t \phi + v \, \partial_x \phi = 0 \quad \Rightarrow \quad p = 0 \quad q = v$$

$$\partial_t \phi + v \, \partial_x \phi - \alpha \, \partial_x^2 \phi = 0 \quad \Rightarrow \quad p = \alpha \, k^2 \quad q = v \quad \text{dissipation}$$

$$\partial_t \phi + v \, \partial_x \phi - \beta \, \partial_x^3 \phi = 0 \quad \Rightarrow \quad p = 0 \quad q = v - \beta \, k^2 \quad \text{dispersion}$$

- That is, the FTBS discretization introduces artificial numerical dissipation to prevent the growth of instabilities.
- Notice that the dissipation coefficient $\alpha \propto \Delta t$.
- Therefore, in the continuum limit $\lim_{\Delta x \to 0} \alpha = 0$