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Forward-Time Backward-Space (FTBS) Discretization
We will approximate the advection equation as
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Working with PDEs

We will solve a simple advection equation: Equation

∂φ
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Given the following initial data

φ(t = 0) = cos(kx)e−(x−x0)
2/2σ2

k = 2πnn
L , nn = 10, L = xmax − xmin, x0 and σ are user inputs.

Boundary conditions: at i = 1, set φi−1 to φN−1; at i = N, set φi+1
to φ2
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Specify dx
Specify dt : from von Neumann stability analysis we found that

dt ≤ 1
v

dx

In my code you will see

dt = λ
1
v

dx

where λ is the Courant-Friedrichs-Lewy condition (CFL
condition) and I have λ specified.
Decide how your code will exit, I end after a specified number of
cycles.
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To Do

Once your code is up and running, perform the following tasks.
Explore λ to get a sense of the stability situation.
When the code is stable, what happens as you evolve φ? Why?
Explore other choices for the FT stencil.
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