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Forward-Time Backward-Space (FTBS) Discretization

We will approximate the advection equation as
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Working with PDEs

@ We will solve a simple advection equation: Equation
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@ Given the following initial data

#(t = 0) = cos(kx)e~x—)*/20°

k = 21””, nn =10, L = xmax — xmin, xo and ¢ are user inputs.
@ Boundary conditions: at i = 1, set ¢;_1 t0 ¢n_1; at i = N, set ¢;4
to ¢2
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@ Specify dx
@ Specify dt: from von Neumann stability analysis we found that

df < 1dx
v
In my code you will see
1
dt = A—dx
v
where ) is the Courant-Friedrichs-Lewy condition (CFL
condition) and | have )\ specified.

@ Decide how your code will exit, | end after a specified number of
cycles.
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Once your code is up and running, perform the following tasks.
@ Explore ) to get a sense of the stability situation.
@ When the code is stable, what happens as you evolve ¢? Why?
@ Explore other choices for the FT stencil.
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