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1-dim Schrödinger Equation

Consider the Schrödinger equation describing the evolution of a
quantum state Ψ:

i ~
∂Ψ

∂t
= H Ψ where H = − ~2

2 m
∇2 + V (~x)

The wave function Ψ must satisfy the unitary condition∫ +∞

−∞
|Ψ|2d3~x = 1

and boundary conditions

Ψ(~x →∞, t) = 0

For simplicity, we will consider the 1-dim case, where

H = − ~2

2 m
∂2

∂x2 + V (x)

we will also set ~ = 1 and m = 1/2
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A formal solution to the Schrödinger equation is

Ψ(x , t) = e−iHt Ψ(x ,0)

since
i
∂Ψ

∂t
= i(−i H)e−iHt Ψ(x ,0) = H Ψ

Therefore

Ψ(x ,∆t) = e−iH∆t Ψ(x ,0) = (1− i H ∆t)Ψ(x ,0)

Ψ(x ,2 ∆t) = (1− i H ∆t)Ψ(x ,∆t)
Ψ(x ,3 ∆t) = (1− i H ∆t)Ψ(x ,2∆t)

...
Ψ(x , (n + 1) ∆t) = (1− i H ∆t)Ψ(x ,n ∆t)

but tn ≡ n ∆t , so

Ψ(x , tn+1) = (1− i H ∆t)Ψ(x , tn)
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The approximation Ψ(x , tn+1) = (1− i H ∆t)Ψ(x , tn) can be rewritten
as

i
[

Ψ(x , tn+1)−Ψ(x , tn)

∆t

]
= H Ψ(x , tn)

which is how we derived the Euler step.

If in addition we approximate the Hamiltonian by

H Ψn
j = −

[
Ψn

j+1 − 2 Ψn
j + Ψn

j−1

∆x2

]
+ V Ψn

j

we get that

i

[
Ψn+1

j −Ψn
j

∆t

]
= −

[
Ψn

j+1 − 2 Ψn
j + Ψn

j−1

∆x2

]
+ V Ψn

j

which is a Forward-Time Centered-Space discretization of the
Schrd̈inger equation.
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von-Neumann stability analysis. Substitute Ψn
j = ξnei j k ∆t into

i

[
Ψn+1

j −Ψn
j

∆t

]
= −

[
Ψn

j+1 − 2 Ψn
j + Ψn

j−1

∆x2

]
+ V Ψn

j

and determine this algorithm’s stability criterion.
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Consider instead
eiHt Ψ(x , t) = Ψ(x ,0)

Thus,

(1 + i H ∆t)Ψ(x ,∆t) = Ψ(x ,0)

(1 + i H ∆t)Ψ(x ,2 ∆t) = Ψ(x ,∆t)
(1 + i H ∆t)Ψ(x ,3 ∆t) = Ψ(x ,2∆t)

...
(1 + i H ∆t)Ψ(x , (n + 1) ∆t) = Ψ(x ,n ∆t)

therefore
(1 + i H ∆t)Ψ(x , tn+1) = Ψ(x , tn)

or equivalently

i
[

Ψ(x , tn+1)−Ψ(x , tn)

∆t

]
= H Ψ(x , tn+1)

implicit evolution
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von-Neumann stability analysis. Substitute Ψn
j = ξnei j k ∆t into

i

[
Ψn+1

j −Ψn
j

∆t

]
= −

[
Ψn+1

j+1 − 2 Ψn+1
j + Ψn+1

j−1

∆x2

]
+ V Ψn+1

j

and determine this algorithm’s stability criterion.
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However, the problem with the implicit method (1 + i H ∆t)Ψn+1
j = Ψn

j
is that Ψn

j ∝ ξn, therefore as n� 1∫ +∞

−∞
|Ψ|2dx ≤ 1

also the accuracy in approximating the time derivative is O(∆t)

Let’s consider the following alternative

e−iH∆t ≈
(
1− 1

2 i H ∆t
)(

1 + 1
2 i H ∆t

)
Therefore, Ψ(x , tn+1) = e−iHt Ψ(x , tn) yields(

1 +
1
2

i H ∆t
)

Ψ(x , tn+1) =

(
1− 1

2
i H ∆t

)
Ψ(x , tn)
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A von-Neumann stability analysis yields

ξ =
(1− i A)

(1 + i A)

where

A ≡
(

4 ∆t
∆x2

)
sin2 (k ∆t/2) + ∆t V

thus |ξ|2 = 1 marginally stable.
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What type of discretization is

Ψn+1
j +

1
2

i H ∆tΨn+1
j = Ψn

j −
1
2

i H ∆tΨn
j

Re-write is as

i

[
Ψn+1

j −Ψn
j

∆t

]
= H

[
Ψn+1

j + Ψn
j

2

]

Crank-Nicolson
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Solving (
I +

1
2

i ∆t H
)

Ψn+1 =

(
I − 1

2
i ∆t H

)
Ψn

implies

Ψn+1 =

(
I +

1
2

i ∆t H
)−1(

I − 1
2

i ∆t H
)

Ψn

inverting an operator. We accomplish this by re-writing the equation
as

Ψn+1 =

(
I +

1
2

i ∆t H
)−1 [

2 I −
(

I +
1
2

i ∆t H
)]

Ψn

=

[
2
(

I +
1
2

i ∆t H
)−1

− I

]
Ψn
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Given

Ψn+1 =

[
2
(

I +
1
2

i ∆t H
)−1

− I

]
Ψn

define

Q ≡ 1
2

(
I +

1
2

i ∆t H
)

so
Ψn+1 = Q−1Ψn −Ψn

Therefore, the integration proceeds in two steps.
First step: Solve the system Q Φ = Ψn

Second step: Update the solution with Ψn+1 = Φ−Ψn

Depending of the problem, solving the system Q Φ = Ψn could be
computationally expensive. Is there a way to reduce the cost?
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Iterative Crank-Nicolson

Recall that the approximation to ∂t Ψ = ρ[Ψ]

Ψn+1 −Ψn

∆t
= ρ

[
Ψn+1 −Ψn

2

]
will require a matrix inversion because of Ψn+1 in the r.h.s. of the
equation. Is there a way to avoid this?

Yes, we will obtain Ψn+1 from a series of intermediate steps similar to
the Runge-Kuta method.
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ICN - First Step

(1)Ψn+1 = Ψn + ∆t ρ[Ψn] Euler step

(1)Ψn+1/2 =
1
2

[
(1)Ψn+1 + Ψn

]
Average
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ICN - Second Step

(2)Ψn+1 = Ψn + ∆t ρ[ (1)Ψn+1/2] Euler step

(2)Ψn+1/2 =
1
2

[
(2)Ψn+1 + Ψn

]
Average
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ICN - Third Step

Ψn+1 = Ψn + ∆t ρ[ (2)Ψn+1/2)] Euler step
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ICN - Summary

(1)Ψn+1 = Ψn + ∆t ρ[Ψn] Euler step

(1)Ψn+1/2 =
1
2

[
(1)Ψn+1 + Ψn

]
Average

(2)Ψn+1 = Ψn + ∆t ρ[ (1)Ψn+1/2] Euler step

(2)Ψn+1/2 =
1
2

[
(2)Ψn+1 + Ψn

]
Average

Ψn+1 = Ψn + ∆t ρ[ (2)Ψn+1/2)] Euler step
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