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Method of Lines

@ The method of lines (MOL) is a numerical technique for solving
PDEs by discretizing all the spatial derivatives.

@ The net effect is translating the problem into an
initial-value-problem with only one independent variable, time.

@ The resulting system of ODEs (semi-discrete problem) is solved
using sophisticated general purpose methods and software that
have been developed for numerically integrating ODEs.

As an example, let’s consider the advection equation
3t¢ = -V 8ng5

with t <0, v > 0, and x € [0, 1]. The initial data is ¢(f = 0, x) = f(x)
and the boundary condition ¢(t,x = 0) = g(t).
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@ We first discretize the spatial derivative dy¢

Ded], = ¢i+12;)€fi—1

@ Thus, the semi-discrete problem is

doi _  ($ir1 —9i1)
a 2 Ax

@ Notice that we now have a coupled system of ODEs of the form

do;
= o(t.0)

for which we can apply the methods we discussed before, in
particular Runge-Kutta methods.

@ Given that we are using center-space discretization, applying an
Euler step (i.e. forward-time) will be unstable.
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Velwe of MOLT
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Burger’s Equation

@ Recall the advection equation 0:¢ + udx¢ = 0 in which the
quantity ¢ is advected or convected with a velocity u.

@ Consider instead 0;u + uodyu = 0. That is, the velocity at which
the quantity is advected depends on the quantity itself.

@ This equation is called the inviscid Burger’s equation.

@ This equation is widely used as a model to investigate
non-linearities in fluid dynamics traffic control, etc..

@ The general form of the Burger’s equation is
Ol + udyu = vd?u

with v a viscosity coefficient.
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@ Consider the inviscid Burger’s equation 0;u + u dyu = 0 with
initial data u(t = 0, x) = up(x)

@ Method of Characteristics: Find the curves x(t) tangent to the
vector 0r + u dx, such that u(t, x(t)) is constant.

@ That s,
O~ uexn)
du(t,x(t)) _ ou N dx du
at ot  dt ox
= ou +u ou =0
ot ox

@ The solutions are

u(t,x(t)) = u(0,x(0)) = uo(xo)
x(1) Xo + tu(0,x(0)) = xo + t Up(x0)
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@ Therefore, the solution to the Burger’s equation reads
u(t, x) = ug(x — tup(xo))

@ Thus, the solution is constant along the characteristics
Xo = X — t Up(X0)-

@ The characteristics are straight lines with slope 1/uy(xp) in the
t — x plain.

@ For each characteristic, the value of the slope is fixed by the
initial data up(x) at x = xo
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Consider initial data of the form
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The pulse evolves as

A

Notice that the larger the value of u the more advected that portion of
the solutions gets.
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Let S = O,u, then

as dx
E = 8;S+ E&(S:@tS—i— udyS

Ot0xU + U O2U = Oy (Oru + U Oyxu) — (OxU)?
_ g2
The solution to this equation is

_ 5
_t30+1

o 8XU0

or Oyu

Therefore, as t — —1/0xUp the slope of the solution diverges, that is,
OxU — oo. In other words, the solution develops a shock discontinuity.

In the case of the general viscous Burger’s equation (v # 0), the
shock profile gets smoothed out due to the dissipation.
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Shock Boundary

@ Consider initial data such that 92uy(x) = 0 everywhere and
OxUp(x) = const < 0 if x € [x1, X2].

@ Recall that the characteristics are given by the straight lines
X = X + Up(X) t where X is the value of x at t = 0.

@ Recall also that the shock will develop when t* = —1/0xup(X).
@ Therefore, the location where the shock develops is
X =X+ Up(X) t*
@ Consider to points x,, Xp such that x; < x5, xp < X2
@ Then

Xa+ Up(Xa) " = Xp+ (Xa— Xp) + [Uo(Xb) + (Xa — Xp)OxUo(Xp)] t*
aXUO(Xb)

= X+ (= x6) + () U~ (e = Xo) 5 1
X

= Xp+ Uo(Xb) t*

@ Therefore, all the characteristics starting within the interval
[x1, x2] cross at the same point given by x = X — up(X)/9xUo(X)
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@ Location of the shock boundary point x = X — ug(X)/0xUo(X)

@ Notice that the characteristics have different slopes but the same
shock developing time.

@ Thus, the shape of the boundary shock depends on the “shape”
of the initial data.

/ Shock boundary

SN
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