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Method of Lines

The method of lines (MOL) is a numerical technique for solving
PDEs by discretizing all the spatial derivatives.
The net effect is translating the problem into an
initial-value-problem with only one independent variable, time.
The resulting system of ODEs (semi-discrete problem) is solved
using sophisticated general purpose methods and software that
have been developed for numerically integrating ODEs.

As an example, let’s consider the advection equation

∂tφ = −v ∂xφ

with t ≤ 0, v > 0, and x ∈ [0, 1]. The initial data is φ(t = 0, x) = f (x)
and the boundary condition φ(t , x = 0) = g(t).
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We first discretize the spatial derivative ∂xφ

∂xφ|i =
φi+1 − φi−1

2∆x

Thus, the semi-discrete problem is

dφi

dt
= −v

(φi+1 − φi−1)

2∆x

Notice that we now have a coupled system of ODEs of the form

dφi

dt
= ρ(t ,φj)

for which we can apply the methods we discussed before, in
particular Runge-Kutta methods.
Given that we are using center-space discretization, applying an
Euler step (i.e. forward-time) will be unstable.
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Burger’s Equation

Recall the advection equation ∂tφ+ u ∂xφ = 0 in which the
quantity φ is advected or convected with a velocity u.
Consider instead ∂t u + u ∂xu = 0. That is, the velocity at which
the quantity is advected depends on the quantity itself.
This equation is called the inviscid Burger’s equation.
This equation is widely used as a model to investigate
non-linearities in fluid dynamics traffic control, etc..
The general form of the Burger’s equation is

∂t u + u ∂xu = ν∂2u

with ν a viscosity coefficient.
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Consider the inviscid Burger’s equation ∂t u + u ∂xu = 0 with
initial data u(t = 0, x) = u0(x)
Method of Characteristics: Find the curves x(t) tangent to the
vector ∂t + u ∂x , such that u(t , x(t)) is constant.
That is,

dx(t)
dt

= u(t , x(t))

du(t , x(t))
dt

=
∂u
∂t

+
dx
dt

∂u
∂x

=
∂u
∂t

+ u
∂u
∂x

= 0

The solutions are

u(t , x(t)) = u(0, x(0)) = u0(x0)

x(t) = x0 + t u(0, x(0)) = x0 + t u0(x0)
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Therefore, the solution to the Burger’s equation reads
u(t , x) = u0(x − t u0(x0))

Thus, the solution is constant along the characteristics
x0 = x − t u0(x0).
The characteristics are straight lines with slope 1/u0(x0) in the
t − x plain.
For each characteristic, the value of the slope is fixed by the
initial data u0(x) at x = x0
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Consider initial data of the form
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The pulse evolves as

Notice that the larger the value of u the more advected that portion of
the solutions gets.

Kokkotas, Laguna & Shoemaker Computational Physics





Let S ≡ ∂xu, then

dS
dt

= ∂tS +
dx
dt

∂xS = ∂tS + u ∂xS

= ∂t∂xu + u ∂2
x u = ∂x(∂t u + u ∂xu)− (∂xu)2

= −S2

The solution to this equation is

S =
S0

t S0 + 1
or ∂xu =

∂xu0

t ∂xu0 + 1

Therefore, as t → −1/∂xu0 the slope of the solution diverges, that is,
∂xu → ∞. In other words, the solution develops a shock discontinuity.

In the case of the general viscous Burger’s equation (ν '= 0), the
shock profile gets smoothed out due to the dissipation.
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Shock Boundary

Consider initial data such that ∂2
x u0(x) = 0 everywhere and

∂xu0(x) = const < 0 if x ∈ [x1, x2].
Recall that the characteristics are given by the straight lines
x = x̄ + u0(x̄) t where x̄ is the value of x at t = 0.
Recall also that the shock will develop when t∗ = −1/∂xu0(x̄).
Therefore, the location where the shock develops is
x = x̄ + u0(x̄) t∗

Consider to points xa, xb such that x1 ≤ xa, xb ≤ x2

Then

xa + u0(xa) t∗ = xb + (xa − xb) + [u0(xb) + (xa − xb)∂xu0(xb)] t∗

= xb + (xa − xb) + u0(xb) t∗ − (xa − xb)
∂xu0(xb)

∂xu0(xb)

= xb + u0(xb) t∗

Therefore, all the characteristics starting within the interval
[x1, x2] cross at the same point given by x = x̄ − u0(x̄)/∂xu0(x̄)
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Location of the shock boundary point x = x̄ − u0(x̄)/∂xu0(x̄)
Notice that the characteristics have different slopes but the same
shock developing time.
Thus, the shape of the boundary shock depends on the “shape”
of the initial data.
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