
Lecture Notes for PHYS 527 Fall 2007

Deirdre Shoemaker

11 Lecture: Spectral Analysis

We take a quick return to data analysis using spectral methods.

11.1 Discrete Fourier Transform

• A Fourier transform is a mathematical formula that transform signals between time
(or space) and frequency domain. It is reversible.

F̃ (f) =

∫ ∞
−∞

F (t)e−2πitfdt

Y (f) =

∫ ∞
−∞

y(t)e−2πitfdt

or

F (t) =

∫ ∞
−∞

F̃ (f)e+2πitfdf

y(t) =

∫ ∞
−∞

Y (f)e+2πitfdf

• For a periodic function over time, the Fourier transform is simplified to a calculation
of discrete set of complex amplitudes (Fourier series coeffs).

• Periodic or oscillatory functions require different curve fitting than linear or polyno-
mial, some kind of trigonometric fitting - spectral analysis

• Spectral analysis can easily be a semester course, usually called signal processing in
Engineering.

• We shall only cover the basics, see Jenkins and Watts for complete study.

• Given a vector of N points, and data set y = [y1, y2, . . . .yN ] that is typically a time
series.
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• The data is evenly spaced in time so tj+1 = τj and τ is the sampling interval and
j = 0, ..N − 1 .

• The vector Y is the discrete Fourier transform of y

Yk+1 =

N−1∑
j=0

yj+1e
−2πijk/N

where i =
√
−1 and k = 0 . . . N − 1 .

• The inverse transform is

yk+1 =
1

N

N−1∑
k=0

Yk+1e
2πijk/N .

• NOTE: different packages and libraries define this transformation differently, espe-
cially the normalization. Always check.

• Each point, Yk+1, of the transform has an associated frequency

fk+1 =
k

τN
.

The lowest, non-zero, frequency is at k = 1, f2 = 1/(τN) = 1/T where T is the
length of the time series.

• This implies that to measure very low frequencies, we need very long time series.

• The highest frequency is fN ≈ 1/τ , so to measure very high frequencies we need to
use a very short sampling rate. (Aliasing in a second)

11.1.1 Example

• Initialize a sine wave time series, yj+1 = sin(2πfsjτ + φ0)

• Compute the transform using either Direct sum of fast Fourier transform

• Compute the power spectrum, Pk+1 =| Yk+1 |2

• Example 1: τ = 1, N = 50, fs = 0.2 and φ0 = 0. Use ftdemo.m to see this. The sine
wave is jagged because of the slow sampling rate. The real part of the transform is 0
and the imaginary part has 2 spikes, one at f=0.2 and another at f=0.8 (k = 10 and
k = 40) .

• Example 2: If we change the phase to φ0 = π/2, we get a cosine wave and the
imaginary part is zero and the real part now has two spikes at f=0.2 and 0.8.
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• Example 3: If we choose a frequency that does not fall on a grid point, fs 6= fk+1

such as fs = 0.2123 the transform is not as simple. Now we have both real and
imaginary parts in addition to a spread of the spikes. This is because the frequency
of the signal is not equal to nor a multiple of 1/τN .

• At this point, it is typical to plot the power spectrum instead

Pk+1 =| Yk+1 |2= Yk+1Y
∗
k+1

where ∗ is the complex conjugate.

• Now we see two well defined spikes, one of which is between 0.2 and 0.22 as expected.

• Why two spikes?

11.1.2 Aliasing and Nyquist Frequency

• If we do a fourth example, and set fs = 0.8, and keep everything else fixed, we will
get the same result as fs = 0.2 despite the fact that the frequencies are completely
different. The only difference is a phase shift of π

• The Fourier transforms for the two sine waves, one at fs = 0.2 and the one of fs = 0.8
for τ = 1 are the same for that phase shift.

• This is known as aliasing.

• Aliasing causes a limit to how high of a frequency we can actual resolve given a
sample time, τ . This upper bound is called the Nyquist frequency

fNy =
1

2τ
.

• For the example we just did, τ = 1 and the Nyquist frequency is 1/2.

• We basically are truncating our Fourier transform at this upper bound, and are
discarding the upper half of the vector Y.

• We can understand this through an “information” argument. The data, y is a real
array containing N points. The Fourier transform is complex, containing N points
real and N points imaginary. It contains a duplicate of the signal in the upper half
of Y.
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11.2 Fast Fourier Transform

The FFT is an efficient computational tool. The physical process is that the same function
can be represented in two ways

a) time domain h(t)

b) frequency domain H(f).

The means of going from h(t) to H(f) is the Fourier Transform

H(f) ≡
∫ ∞
−∞

h(t)e2πiftdt (1)

h(t) ≡
∫ ∞
−∞

H(f)e−2πiftdf (2)

The convolution theorem states that convolution in one domain is just the point-wise
multiplication in the other:

g ∗ h ≡
∫ ∞
−∞

g(τ)h(t− τ)dτ = G(f)H(f)

and likewise the correlation theorem

corr(g, h) ≡
∫ ∞
−∞

g(τ + t)h(τ)dτ = G(f)H∗(f)

where H∗(f) is the complex conjugate of H(f).
Here are some handy facts

If... then ...
h(t) is real H(−f) = H∗(f)
h(t) is imaginary H(−f) = −H∗(f)
h(t) is even H(−f) = H(f)
h(t) is odd H(−f) = −H(f)
h(t) is real and even H(f) is real and even
h(t) is real and odd H(f) is imaginary and odd
h(t) is imaginary and even H(f) is imaginary and even
h(t) is imaginary and odd H(f) is real and odd

• “time-scaling”

h(at) =
1

|a|
H(f/a)
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• “frequency-scaling”
1

|b|
h(t/b) = H(bf)

• “time-shifting”
h(t− t0) = H(f)e2πift0

• “frequency-shifting”
h(t)e−2πif0t = H(f − f0)

Wiener-Khinchin Theorem

Corr(g, g) = |G(f)|2

this is auto-correlation
Parseval’s theorem

Total Power ≡
∫ ∞
−∞
|h(t)|2dt =

∫ ∞
−∞
|H(f)|2df

One-sided power spectral density

Ph(f) ≡ |H(f)|2 + |H(−f)|2 for 0 ≤ f <∞

11.2.1 Fourier Transform of discretely sampled data

Nyquist frequency is

fc ≡
1

2∆

Critical sampling = 2points
cycle
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SAMPLING THEOREM: If h(t), sampled at an interval, ∆, is such that H(f) = 0 for
all |f | ≥ fc ≡ 1/2∆ then h(t) is completely determined by hn

h(t) = ∆
+∞∑

n=−∞
h)n

sin[2πfc(t− n∆)]

π(t− n∆)

If h(t) is not bandwidth limited, i.e. H(f) 6= 0 for all |f | < fc, then ALIASING

11.3 Discrete Fourier Transform

hk ≡ h)(tk) where tk ≡ k∆, and k = 0, 1, 2, . . . , N − 1 and N is even.
Goal is to estimate H(f) at

fn ≡
n

N∆

where n = −N
2 , . . . ,

N
2 so −fc ≤ fn ≤ fc

H(fn) =

∫ ∞
−∞

h(t)e2πifntdt ≈
N−1∑
n=0

hke
2πifntk∆ = ∆

N−1∑
k=0

hke
2πikn//N

Let

Hn ≡
N−1∑
k=0

hke
2πikn/N

so H(fn) ≈ ∆Hn Since H−n = HN−n, we can have the discrete Parseval’s theorem

N−1∑
k=0

|h(k)|2 =
1

N

N−1∑
n=0

|Hn|2
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