
Given a signal s(t) the goal is to determine the physical parameters of the system that generated the signal.
We would like to measure the masses of the two black holes, m1 and m2, although it turns out to be more
convenient to work with the total mass M = m1 +m2 and the “symmetric mass ratio” η = m1m2/(M

2).

We’ll proceed by constructing candidate “template” waveforms and then seeing how well each template
matches the signal. Constructing a full template is a really hard problem, and requires numerical relativity.
However for our purposes we can use an approximation to the waveform
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where G is Newton’s gravitational constant and c is the speed of light (we usually work in units where both
are dimensionless and set to 1), M� is the mass of our sun (which in these units is 4.9× 10−6 seconds) and
r is the distance from the source to Earth. It will turn out that all the terms before f−7/6 cancel out and
can be ignored, but I included them here for completeness. Note that this gives the Fourier transform of the
template!

Ψ(f ;M,η) is the “phase evolution,” which you can take from equation (3.1) in
http://arxiv.org/pdf/gr-qc/9808076v1.pdf.

The next question is how to measure how well a template matches the signal. First, define

(h | s) =

∫ fhigh

flow

s̃(f)h̃?(f)

Sn(f)
df (2)

where Sn(f) models the noise in the gravitational-wave detector. This is very much like the vector dot
product, where the vectors are elements in the space of functions. Conventionally the low frequency flow is
taken to be 40 Hz, and fhigh can be taken to be 1024 Hz.

Then define the overlap as

〈h | s〉 =
(h | s)√

(h |h) (s | s)
(3)

This normalizes the “lengths” of the vectors, and so gives a value between 0 and 1. You can also check that
this normalization removes all the leading terms in equation (1), leaving only the parts that depend on the
frequency.

There are lots of different models for Sn(f), but one good one to use is

Sn(x) = (4.49x)−56.0 + 0.16x−4.52 + 0.52 + 0.32x2 (4)

where x = f/150.0.

There is one remaining subtlety. In advance we don’t know the time at which the signal will arrive, and
the waveform has an unknown phase which we can think of as the point in the orbit where the signal first
becomes visible. One way of addressing this is to add the time shift τ and phase shift φ0 to the set of
variables, and do a four-dimensional monte carlo. This is in fact what’s done in real analyses, however, this
greatly increases the complexity and time required. Fortunately there are some tricks that give reasonable
approximations.

Consider a time-domain signal h(t) with Fourier transform h̃(f). If we add a time shift τ to the signal then
using the definition of the Fourier transform you can show that the transform of h(t+τ) is exp(−2πifτ)h̃(f).
Substituting this into equation (2) gives ∫ fhigh

flow

s̃(f)h̃?(f)

Sn(f)
e2πifτ df (5)

1



but this is just the inverse Fourier transform of the function s̃(f)h̃?(f)/Sn(f), which means we can easily
evaluate the overlap for all times in a single operation.

Adding the unknown phase φ0 is even easier, it turns equation (5) into

e−2πiφ0

∫ fhigh

flow

s̃(f)h̃?(f)

Sn(f)
e2πifτ df (6)

Because the phase is a constant it just comes out of the integral. Since the magnitude of any number of the
form eix is 1 the phase can then be eliminated by taking the absolute value of (6). We can then choose the
best time value by taking the maximum of the resulting series.

Putting it all together, the measure of how well a signal matches a template (which I’ve informally called
the ”goodness of fit” and which in proper monte carlo lingo would be called the ”likelihood”) is
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