
Lecture 6 Feb 3, 2014

Goals:

 stacks

Implementation of stack

applications

Postfix expression evaluation

Convert infix to postfix

Stack Overview

Stack ADT
Basic operations of stack

push, pop, top, isEmpty etc.

Implementations of stacks using
Array

Linked list

(recall the abstract data type vs. concrete data
structures that implement them.)

Application to arithmetic expression evaluation

(both steps: converting to postfix, postfix expression
evaluation)

Stack ADT

A stack is a list in which insertion and deletion take

place at the same end

This end is called top

The other end is called bottom

Stacks are known as LIFO (Last In, First Out) lists.

The last element inserted will be the first to be retrieved

Push and Pop

Primary operations: Push and Pop

Push

Add an element to the top of the stack

Pop

Remove the element at the top of the stack

top

empty stack

A
top

push an element

top

push another

A

B

top

pop

A

Implementation of Stacks

Any list implementation could be used to

implement a stack

 arrays (static: the size of stack is given initially)

 Linked lists (dynamic: never becomes full)

We will explore implementation based on

array.

Stack class

class Stack {

public:

 Stack(int size = 10); //

constructor

 ~Stack() { delete [] values; } //

destructor

 bool IsEmpty() { return top == -1; }

 bool IsFull() { return top == maxTop; }

 double Top(); // examine, without popping

 void Push(const double x);

 double Pop();

 void DisplayStack();

private:

 int maxTop; // max stack size = size - 1

 int top; // current top of stack

 double* values; // element array

};

Stack class

Attributes of Stack

 maxTop: the max size of stack

 top: the index of the top element of stack

 values: point to an array which stores elements of
stack

Operations of Stack

 IsEmpty: return true if stack is empty, return false
otherwise

 IsFull: return true if stack is full, return false otherwise

 Top: return the element at the top of stack

 Push: add an element to the top of stack

 Pop: delete the element at the top of stack

 DisplayStack: print all the data in the stack

Create Stack

The constructor of Stack
 Allocate a stack array of size. By default,

size = 10.

Initially top is set to -1. It means the stack is empty.

When the stack is full, top will have its maximum
value, i.e. size – 1.

 Stack::Stack(int size /*= 10*/) {

 values = new double[size];

 top = -1;

 maxTop = size - 1;

}

Although the constructor dynamically allocates the stack array,
the stack is still static. The size is fixed after the initialization.

Push Stack

void Push(const double x);

Push an element onto the stack

Note top always represents the index of the top
element. After pushing an element, increment
top.

void Stack::Push(const double x) {

 if (IsFull()) // if stack is full, print error

 cout << "Error: the stack is full." << endl;

 else

 values[++top] = x;

}

Pop Stack

double Pop()

Pop and return the element at the top of the stack

Don’t forget to decrement top

double Stack::Pop() {

 if (IsEmpty()) { //if stack is empty, print error

 cout << "Error: the stack is empty." << endl;

 return -1;

 }

 else {

 return values[top--];

 }

}

Stack Top

double Top()

Return the top element of the stack

Unlike Pop, this function does not remove the top
element

double Stack::Top() {

 if (IsEmpty()) {

 cout << "Error: the stack is empty." << endl;

 return -1;

 }

 else

 return values[top];

 }

Printing all the elements

void DisplayStack()

Print all the elements

void Stack::DisplayStack() {

 cout << "top -->";

 for (int i = top; i >= 0; i--)

 cout << "\t|\t" << values[i] << "\t|" << endl;

 cout << "\t|---------------|" << endl;

}

Using Stack

int main(void) {

 Stack stack(5);

 stack.Push(5.0);

 stack.Push(6.5);

 stack.Push(-3.0);

 stack.Push(-8.0);

 stack.DisplayStack();

 cout << "Top: " << stack.Top() << endl;

 stack.Pop();

 cout << "Top: " << stack.Top() << endl;

 while (!stack.IsEmpty()) stack.Pop();

 stack.DisplayStack();

 return 0;

}

result

Application 1: Balancing Symbols

To check that every right brace, bracket, and

parentheses must correspond to its left counterpart

 e.g. [()]{ } is legal, but {[(])} is illegal

Formal definition of balanced expressions:

 A balanced expression over the symbols [] { } () is a

string using these characters that is recursively defined

as follows:

 (base) { }, [] and () are balanced expression (rule 1)

 (induction) if R is balanced, so are (R), [R] and {R}. If R and S are
balanced, then so is R.S (concatenation) (rules 2a and 2b)

(exclusion) Any balanced expression can be obtained by applying

the above rules a finite number of times. (rule 3)

You can check using above definition that

{ [] () } [] is balanced.

Formal Proof:

1. [] is balanced (rule 1)

2. () is balanced (rule 1)

3. [] () is balanced (rule 2b applied to 1 & 2)

4. { [] () } is balanced (rule 2a applied to 3)

5. [] is balanced (rule 1)

6. {[] ()} [] is balanced (rule 2b applied to 3 and 5)

How do you formally prove that some expression is NOT

balanced?

Algorithm for balanced expression testing

To check that every right brace, bracket, and
parentheses must correspond to its left counterpart
 e.g. [()]{ } is legal, but {[(])} is illegal

Algorithm (returns true or false)

(1) Make an empty stack. If the input string is of length 0,
return false.

(2) Read characters until end of file

i. If the character is an opening symbol, push it onto the stack

ii. If it is a closing symbol, then if the stack is empty, report false

iii. Otherwise, pop the stack. If the symbol popped is not the

 corresponding opening symbol, then report false

(3) At end of file, if the stack is not empty, report false

(4) Report true

Application 2: Expression evaluation

Given an arithmetic expression such as:

 x + y * (z + w)

(Given values assigned to x = 23, y = 12, z = 3 and w = -4)

What is the value of the expression?

Goal: Design a program that takes as input an arithmetic
expression and evaluates it.

This task is an important part of compilers. As part of this
evaluation, the program also needs to check if the given
expression is correctly formed.

Example of bad expressions:

(3 + 12 * (5 – 3)

A + B * + C etc.

Postfix expression

Instead of writing the expression as A + B, we write

the two operands, then the operator.

Example: a b c + *

It represents a*(b + c)

Question: What is the postfix form of the expression

a+ b*c?

Postfix expression

Instead of writing the expression as A + B, we write

the two operands, then the operator.

Example: a b c + *

It represents a*(b + c)

Question: What is the postfix form of the expression

a+ b*c?

Answer: a b c * +

Algorithm for evaluating postfix expression

 Use a stack.

 Push operands on the stack.

 When you see an operator, pop off the top two

elements of the stack, apply the operator, push the

result back.

 At the end, there will be exactly one value left on the

stack which is the final result.

Algorithm for evaluating postfix expression

 Use a stack.

 Push operands on the stack.

 When you see an operator, pop off the top two elements of the stack, apply the

operator, push the result back.

 At the end, there will be exactly one value left on the stack which is the final result.

Example: 12 8 3 * +

top

empty stack

12 top

empty stack

12 top

empty stack

 8

top

empty stack

8
 12

3

12

24

Finally, the result 36 is pushed back on the stack.

Implementation of exp evaluation
token class:

class token {

 private: int op_type;

 double value;

 public:

 token(int x, int y) {

 op_type = x; op_value = y;

 }

 int get_op_type() {

 return op_type;

 }

 double get_value() {

 return value;

 }

 void set_op_type(int x) { op_type = x;

 }

 void set_value(double y) {value = y;

 }

 };

Op_type:

 1  +

 2  -

 3  *

 4  /

 5  **

 6  operand

 –1  token represents

end of expression

op_value: value of the

operand.

Input

 Look at the main program:

int main(void) {

 string str = "908 100 200+ 23 19 * +/ 123 *";

 Expr ex(str, 0);

 double rslt = ex.eval();

 cout << "The result of evaluation is " << rslt << endl;

 return 0;

};
There must be a space

between successive operands.

There need not be a space

when an operand follows an
operator, and after an

operator. There can be more

than one space after any

token, including the last.

Implementation of expression evaluation
 double eval() {

 // assumes that the postfix expression is correct

 // also unary minus is not allowed. Operands have to be integers

 // although the final result can be non-integral

 Stack st(MAX_SIZE);

 token tok = get_token(); //gets the next token

 while (tok.get_op_type() != -1) {

 if (tok.get_op_type() == 6)

 st.Push(tok.get_value());

 else {

 double opd2 = st.Pop();

 double opd1 = st.Pop();

 double op = apply(tok.get_op_type(), opd1, opd2);

 st.Push(op);

 }

 current++; tok = get_token();

 }

 double result = st.Pop(); return result;

 } // eval

}; // end Expr

Code for get_token
 token get_token() {

 token tok(-1, 0);

 if (current > exp.length() - 1)

 return tok;

 while (exp[current] == ' ') current++;

 if (current > exp.length() – 1) return tok;

 if (exp[current] == '+') tok.set_op_type(1);

 else if (exp[current] == '-') tok.set_op_type(2);

 else if (exp[current] == '/') tok.set_op_type(4);

 else if (exp[current] == '*') {

 if (exp[current+1] != '*') tok.set_op_type(3);

 else {tok.set_op_type(5); current++;}

 }

 else { // token is an operand

 double temp = 0.0;

 while (!(exp[current] == ' ') && !optr(exp[current])) {

 temp= 10*temp+val(exp[current]); current++; }

 if (optr(exp[current])) current--;

 tok.set_op_type(6);

 tok.set_value(temp);

 }

 return tok;

 } //end get_token

Stack and Queue / Slide 26

Converting infix to Postfix expression

Recall the postfix notation from last lecture.

Example: a b c + *

It represents a*(b + c)

What is the postfix form of the expression a + b*(c+d)?

Answer: a b c d + * +

Observation 1: The order of operands in infix and postfix are exactly

the same.

Observation 2: There are no parentheses in the postfix notation.

Stack and Queue / Slide 27

Example :

(a) Infix: 2 + 3 – 4 Postfix: 2 3 + 4 –

(b) Infix: 2 + 3 * 4 Postfix: 2 3 4 * +

The operators of the same priority appear in the same order,

operator with higher priority appears before the one with lower

priority.

Rule: hold the operators in a stack, and when a new

operator comes, push it on the stack if it has higher

priority. Else, pop the stack off and move the result to

the output until the stack is empty or an operator with a

lower priority is reached. Then, push the new operator

on the stack.

Stack and Queue / Slide 28

Applying the correct rules on when to pop

Assign a priority: (* and / have a higher priority than +

and – etc.)

Recall: Suppose st.top() is + and next token is *, then *

is pushed on the stack.

However, (behaves differently. When it enters the

stack, it has the highest priority since it is pushed on top

no matter what is on stack. However, once it is in the

stack, it allows every symbol to be pushed on top.

Thus, its in-stack-priority is lowest.

We have two functions, ISP (in-stack-priority) and ICP

(incoming-priority).

Stack and Queue / Slide 29

 In-stack and in-coming priorities

 icp isp

+, – 1 1

*, /

 **

2 2

3 3

(4 0

Stack and Queue / Slide 30

Dealing with parentheses

An opening parenthesis is pushed on the stack (always). It is not

removed until a matching right parenthesis is encountered. At that

point, the stack is popped until the matching (is reached.

Example: (a + b * c + d)* a

Stack: (Output: a

Stack: (+ Output: a

Stack: (+ Output: a b

Stack: (+ * Output: a b

Stack: (+ * Output: a b c

Stack: (+ Output: a b c * +

Stack: (+ Output: a b c * + d

Stack Output: a b c * + d +

Stack * Output: a b c * + d +

Stack * Output: a b c * + d + a

Stack Output: a b c * + d + a *

Stack and Queue / Slide 31

 Code for conversion (infix to postfix)

string postfix() {

 Stack st(100);

 string str ="";

 token tok = get_token();

 string cur = tok.get_content();

 while (tok.get_op_type() != -1) {

 if (tok.get_value() == 1)

 str+= cur + " ";

 else if (cur == ")") {

 while (st.Top()!= "(")

 str += st.Pop() +" ";

 string temp1 = st.Pop();

 }

Stack and Queue / Slide 32

else if (!st.IsEmpty()) {

 string temp2 = st.Top();

 while (!st.IsEmpty() && icprio(cur) <= isprio(temp2)) {

 str+= temp2 + " ";

 string temp = st.Pop();

 if (!st.IsEmpty()) temp2 = st.Top();

}

 }

 if (tok.get_value() != 1 && tok.get_content()!= ")") st.Push(cur);

 current++;

 tok = get_token();

 cur = tok.get_content();

 }

 while (!st.IsEmpty()) {

 str += st.Pop() + " ";

 cout << "string at this point is " << str << endl;

 }

 return str;

 }

