Lec 11

Mid-term 1: Feb 24 or 267

= Topics: (Chapter 4 of text)
binary Trees
expression trees

Binary Search Trees

Feb 17



Trees

dictionary operations

Search, insert and delete

Does there exist a simple data structure for which the
running time of dictionary operations (search, insert,
delete) is O(log N) where N = total number of keys?

Arrays, linked lists, (sorted or unsorted), hash tables,
heaps - none of them can do it.

Trees
Basic concepts
Tree traversal
Binary tree
Binary search tree and its operations



Trees

A tree is a collection of nodes

The collection can be empty

(recursive definition) If not empty, a tree consists of a
distinguished node r (the root), and zero or more
nonempty subtrees T, T, ...., T}, each of whose roots
are connected by a directed edge from r

Figure 4.1 Generic tree



Basic terms

Figure 4.2 A tree

= Child and Parent

= Every node except the root has one parent

= A node can have an zero or more children

= Jeaves

= Leaves are nodes with no children
= Sibling

= nodes with same parent



Implementing a free

struct TreeMode

1
2 |

3 Object glement;

4 TreeNode *firstChild;
5 TreeNode *nextSibling;
6 1

Figure 4.3 MNode declarations for trees
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Figure 4.4 First child/next sibling representation of the tree shown in Figure 4.2




More Terms
= Path

= A sequence of edges
= Length of a path
= number of edges on the path

= Depth of a node
* length of the unique path from the root to that node



More Terms

= Height of a node
= length of the longest path from that node to a leaf
= all leaves are at height o

* The height of a tree = the height of the root

= the depth of the deepest leaf

= Ancestor and descendant
=[f there is a path from n, ton,
" n, is an ancestor of n,, n, is a descendant of n,
» Proper ancestor and proper descendant



Example: UNIX Directory

fusr*
mark* alex* bill*
ST
book* course* junk ju‘nk work* course*
chl.r  ch2r  ch3r cnp\353ﬂ* r.:op3|2]2*
fall98*  spr99*  sum99* fall98* fall99*

| | N~ T

syl.r syLr sylr grades progl.r prog2.r prog2r progl.r  grades
Figure 4.5 unix directory



Example: Expression Trees

Figure 4.14 Expressiontreefor (a + b * ) + ((d * e + f ) * @)

Leaves are operands (constants or variables)

The internal nodes contain operators

Will not be a binary tree if some operators are not
binary (e.g. unary minus)



Expression Tree application

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d * e + f ) * g)

Given an expression, build the tree

Compilers build expression trees when parsing an
expression that occurs in a program

Applications:

Common subexpression elimination.



Expression to expression Tree algorithm

Problem: Given an expression, build the tree.

Solution: recall the stack based algorithm for converting infix to postfix

expression.

From postfix expression E, we can build an expression tree T.

Node structure
Ichild key

class Tree {

rchild

+

/

\

\

char key;
Tree* lchild, rchild;



Expression to expression Tree algorithm

Constructor:
Node structure

Tree (char ch, Tree* 1lft,

Ichild key rchild
Tree* rgt) ({

+ key = ch;
\‘ Y

lchild = 1ft;
\ rchild = rgt;
}

Operand: leaf node

/

Operator: internal node



Expression to expression Tree algorithm

Problem: Given an expression, build the tree.

Input: Postfix expression E, output: Expression tree T
initialize stack S;
for j = o to E.size —1do
if (E[j] is an operand) {
Tree t = new Tree(E[j]);
S.push(t*);}
else {
tree* t1 = S.pop();
tree* t2 = S.pop();
Tree t = new(E[j], t1, t2);
S.push(t*);
}

At the end, stack contains a single tree pointer, which is the pointer to the
expression tree.



Expression to expression Tree algorithm

Example: ab+c™

| (o] /
[ =) ﬁ
] Very similar to prefix
j: : [3] expression evaluation
/ algorithm
J =]
o



Tree Traversal

 used to print out the data in a tree in a certain
order

d Pre-order traversal
O Print the data at the root
 Recursively print out all data in the left subtree
 Recursively print out all data in the right subtree



Preorder, Postorder and Inorder

 Preorder traversal
* node, left, right

» prefix expression
* ++a*bc*+*defg

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d *e + ) * g)



Preorder, Postorder and Inorder

« Postorder traversal * Inorder traversal
» left, right, node * left, node, right
» postfix expression - infix expression

* abc+de*f+g + * a+b*c+d*e+f*g

Figure 4.14 Expressiontree for (a + b * c) + ((d * e+ f ) * g)



Example: Unix Directory Traversal

chl.r 3

fust ch2.r 2
mark ch3.r 4
book book 10
chl.r sy] .r 1

Z:g: fa1198 2

course Spr9;y1.r g
cop3530 syl.r 2

fal198 suma9 3

syl.r cop3530 12

sprg course 13

Sy.l .r junk 6

sum99 mark 30

- syl.r junk 8

] J alex 9
alex. " work 1
b1]1]un grades 3
work progl.r 4
course prog2.r 1
cop3212 fal198 9

Fa1198 progz.r 2

grades progl.r 7

progl.r grades 9

prog2.r fa1199 19

£21199 cop3212 29

nrog2.r ___Course 30

progl.r bil 32

Jusr 72

grades



Recursive algorithm to print all nodes in a tree

fusr¥
mark* alex* bill*
book*® course™® junk Junk work® course™
chlr «ch2r ch3r  cop3530® cop32[2*
fall* spre sum® fall® fall*

syl.r syl.r sylr  grades progle  progls prog2r  proglor  grades

Figure 4.5 unix directory

void FileSystem::1istA11( int depth = 0 ) comst
{
printName( depth ); // Print the name of the object
if{ isDirectory( ) )
for each file ¢ in this directory (for each child)
c.1istA11( depth + 1 );

o led P

}

Figure 4.6 Pseudocode to list a directory in a hierarchical file system



Preorder, Postorder and Inorder Pseudo Code

Algorithm Preorder(x)
Input: = is the root of a subtree.

1. ifz# NULL

2 then output key(zx);
3, Preorder(left(z));
4 Preorder(right(x));

Algorithm Postorder(z)

Input: = is the root of a subtree.
1.

2
3.
4

if = & NULL
then Fostorder(left(z));
Postorder(right(x));
output key(x);

Algorithm Inorder(x)

Input: = is the root of a subtree.
1. ifx3 NULL

3 then Inorder(left(z));

3. output key(z):

4 Inorder(right(z)):



Binary Trees

A tree in which no node can have more than two children

typical

binary tree
The depth of an “ay ;maller than N,

even though in the worst case, the depth can be as large as N - 1.

Worst-case
binary tree




Node Struct of Binary Tree

» Possible operations on the Binary Tree ADT
» Parent, left_child, right_child, sibling, root, etc

* Implementation

» Because a binary tree has at most two children, we can
keep direct pointers to them

struct BinaryNode

{
Object element; // The data in the node
BinaryNode *7eft; // Left child
BinaryNode *right; // Right child

s



Binary Search Trees (BST)

* A data structure for efficient searching, inser-tion
and deletion (dictionary operations)

- All operations in worst-case O(log n) time

* Binary search tree property

* For every node x: ,;5

* All the keys in its left ﬁf \ﬁ
subtree are smaller than ) LY
the key value in x /\ / \

* All the keys in its right /f *\
subtree are larger than the for any node § in this subtree _for any node i this subiree

kew(y) < key(x) keyiz) = key(x)

key value in x



Binary Search Trees

Example:

Tree height = 4

Key requirement of a BST: all the keys in a BST are
distinct, no duplication



Binary Search Trees

The same set of keys may have different BSTs
: { ) J\r_\
Y 2 )

M
%

= |

Average depth of a node is O(log N)
Maximum depth of a node is O(N)
(N = the number of nodes in the tree)



Binary search tree class

template <typename Comparable=
class BinaryiearchTree

{

public:
BinarySearchTree( );
BinarySearchTree( const BimarySearchTree & rhs );
BinarySearchTree( BinarySearchTree && rhs )3
~BinarySearchTres( );

const Comparable & findMin( ) const;

const Comparable & findMax( ) const;

bool contains( const Comparable & x ) const;
bool isEmpty( ) const;

void printTree( ostream & out = cout ) const;

void makeEmpty( J;

void insert( const Comparable & x );
void insert( Comparable && x );

void remove( const Comparable & x );

BinarySearchTree & operator=( const BinarySearchTree & rhs );
BinarysearchTree & operator=( BinarySearchTree && rhs );

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49

private:
struct BinaryNode
{
Comparable element;
BinaryNode *left;
BinaryNode *right;

BinaryNode( const Comparable & theElement, BinaryMNode *1t, BinaryNode *rt )
: element{ theElement }, left{ 1t }, right{ rt } { }

BinaryNode( Comparable && theElement, BinmaryNode *1t, BinaryNode *rt )
: element{ std::move( theElement ) }, left{ 1t }, right{ rt } { }

b
BinaryNode *root;

void insert( const Comparable & x, BinaryNode * & t );

void insert( Comparable && x, BinaryNode * & t© );

void remove( const Comparable & %, BinaryNode * & t );
BinaryNode * findMin{ BinaryNode *t ) const;

BinaryNode * findMax( BinaryNode *t ) const;

bool contains( const Comparable & x, BinaryNode *t ) const;
void makeEmpty( BinaryNode * B T );

void printTree( BinaryMode *t, ostream & out ) const;
BinaryNode * clone( BinaryNode *t ) const;



Searching BST

Example: Suppose T is the tree being searched:

If we are searching for 15, then we are done.

If we are searching for a key < 15, then we should
search in the left subtree.

If we are searching for a key > 15, then we should
search in the right subtree.



Example: Search for 9 ...

Search for 9.

mokE W

compare 9:15(the root), go to left subtree;
compare 9:6, go to right subtree;

compare 9:7, go to right subtree;

compare 9:13, go to left subtree;

compare 9:9, found it!



Search (contains)

* contains (x, t) : return a pointer to the node that has
key x in tree rooted at t, or NULL if there is no such
node

1 Jlnf**

2 * Internal method to test if an item is in a subtree.
3 * ¥ is item to search for.

4 * £ iz the node that roots the subtree.

3 */

& bool contains( const Comparable & x, BinaryNode *t ) const
T

8 if( t == nullptr )

Q return false;

10 else if( x < t-=element )

11 return contains( ®, t-=left );

12 else if( t-=element < x )

13 return contains{ x, t-=right );

I4 alze

15 return true; J/ Match

16}

Figure 4.18 contains operation for binary search trees

 Time complexity: O(height of the tree)



Inorder Traversal of BST

 Inorder traversal of BST prints out all the keys in

sorted order
é / 8)

ONN OO ‘}{@

2L

!

O



findMin/ findMax

= Goal: return the node containing the smallest (largest) key in the
tree

= Algorithm: Start at the root and go left (right) as long as there is a
left (right) child. The stopping point is the smallest (largest) element

template <class Comparable>

BinaryNode<Comparable> *
BinarySearchTree<Comparable>::findMin( BinaryNode<Comparable> *t ) const

{
if( t == NULL )
return NULL;
if( t->left == NULL )
return t;
return findMin( t->left );

}

= Time complexity = O(height of the tree)



Insertion
To insert(X):
= Proceed down the tree as you would for search.

= Ifxis found, do nothing (or update some secondary
record)

= QOtherwise, insert X at the last spot on the path traversed

* Time complex | )



Another example of insertion

Example: insert(11). Show the path taken and the position at
which 11 is inserted.

Note: There is a unique place where a new key can be inserted.




Code for insertion (from text)

Insert is a recursive (helper) function that takes a pointer to a
node and inserts the key in the subtree rooted at that node.

X

Internal method to insert into a subtres.
¥ is the item to insert.

t is the node that roots the subtree.

Set the new root of the subtree.

0 XN N o 0 X

D1d insert{ const Comparable & x, BinaryNode * & T )

if{ £ == NULL
t = new BinaryNode{ =, NULL, MNULL J};
glse if{ % = t-.e%ewent
insert{ x, t->left },
glse if{ t-=element < x )
insert{ x, t-=right J;
glse
: // Duplicate; do nothing



Deletion under Different Cases

= (Case 1:the node is a leaf

» Delete it immediately

» Case 2: the node has one child
» Adjust a pointer from the parent to bypass that node

Figure 4.24 Deletion of a node (4} with one child, before and after



Deletion Case 3

* (Case 3: the node has 2 children

= Replace the key of that node with the minimum element
at the right subtree

= Delete that minimum element

= Has either no child or only right child because if it has
a left child, that left child would be smaller and would
have been chosen. So invoke case 1 or 2.

Figure 4.25 Deletion of a node (2) with two children, before and after

= Time complexity = O(height ot the tree)



Code for Deletion

Code for findMin:

roeos
S

* Internal method to find the smallest item in a subtree t.
* Return node containing the smallest item.

=

Eiharymude * findvin{ BinaryNode *t ) const

if{ £ == NULL )}
Freturn NULL;

if{ t-=left == NULL )
return t;

return findvin{ t-=left );

-



Code for Deletion

-

# ITnternal method to remove from a subtree.
#* w i5 the item to remove.

#* ¥ is5 the node that roots the subtree.

* 5et the new root of the subtree.
s

void remove( const Comparable & x, BinaryNode * & t )

if{ ©t == NULL J
return; S/ Item not found; do nothing
if{ x < t-=element )
remove{ x, t-»left );
glse if{ t-=element = x )
remove( x, t-=right J;
else if({ t-=left != NULL && T-»right != NULL ) // Two children

t-=element = findvin{ t-=right )-=element;
remove( t-=element, T-=right J;

-
-

a
glse

BinaryNode *oldNode = t;
t = { t-=left != NULL ) 7 t-=left : t-=right;
delete aldNode;



Summary of BST

= all the dictionary operations (search, insert and delete) as well as
deleteMin, deleteMax etc. can be performed in O(h) time where h is the
height of a binary search tree.

Good news:
= hisonaverage O(log n) (if the keys are inserted in a random order).

= code for implementing dictionary operations is simple.

Bad news:
= worst-case is O(n).

= some natural order of insertions (sorted in ascending or descending order)
lead to O(n) height. (tree keeps growing along one path instead of
spreading out.)

Solution:

enforce some condition on the structure that keeps the tree from growing
unevenly.



