
Lec 11 Feb 17

Mid-term 1: Feb 24 or 26?

 Topics: (Chapter 4 of text)

 binary Trees

 expression trees

 Binary Search Trees

Trees
 dictionary operations

 Search, insert and delete

 Does there exist a simple data structure for which the
running time of dictionary operations (search, insert,
delete) is O(log N) where N = total number of keys?

 Arrays, linked lists, (sorted or unsorted), hash tables,
heaps – none of them can do it.

Trees
 Basic concepts

 Tree traversal

 Binary tree

 Binary search tree and its operations

Trees

A tree is a collection of nodes

 The collection can be empty

 (recursive definition) If not empty, a tree consists of a
distinguished node r (the root), and zero or more
nonempty subtrees T1, T2,, Tk, each of whose roots
are connected by a directed edge from r

Basic terms

 Child and Parent
 Every node except the root has one parent

 A node can have an zero or more children

 Leaves
 Leaves are nodes with no children

 Sibling
 nodes with same parent

Binary Search Trees / Slide 5

Implementing a tree



More Terms

 Path

 A sequence of edges

 Length of a path

 number of edges on the path

 Depth of a node

 length of the unique path from the root to that node

More Terms

 Height of a node
 length of the longest path from that node to a leaf

 all leaves are at height 0

 The height of a tree = the height of the root

 = the depth of the deepest leaf

 Ancestor and descendant
If there is a path from n1 to n2

 n1 is an ancestor of n2, n2 is a descendant of n1

 Proper ancestor and proper descendant

Example: UNIX Directory

Example: Expression Trees

• Leaves are operands (constants or variables)
• The internal nodes contain operators
• Will not be a binary tree if some operators are not

binary (e.g. unary minus)

Expression Tree application

• Given an expression, build the tree

• Compilers build expression trees when parsing an
expression that occurs in a program

• Applications:

• Common subexpression elimination.

Expression to expression Tree algorithm

Problem: Given an expression, build the tree.

Solution: recall the stack based algorithm for converting infix to postfix

expression.

From postfix expression E, we can build an expression tree T.

Node structure

+

lchild key rchild
class Tree {

 char key;

 Tree* lchild, rchild;

 . . .

}

Expression to expression Tree algorithm

Node structure

+

lchild key rchild

Constructor:

Tree(char ch, Tree* lft,

 Tree* rgt) {

 key = ch;

 lchild = lft;

 rchild = rgt;

}

 Operand: leaf node

Operator: internal node

Expression to expression Tree algorithm

Problem: Given an expression, build the tree.

Input: Postfix expression E, output: Expression tree T
 initialize stack S;
 for j = 0 to E.size – 1 do
 if (E[j] is an operand) {
 Tree t = new Tree(E[j]);
 S.push(t*);}
 else {
 tree* t1 = S.pop();
 tree* t2 = S.pop();
 Tree t = new(E[j], t1, t2);
 S.push(t*);
 }

At the end, stack contains a single tree pointer, which is the pointer to the
expression tree.

Expression to expression Tree algorithm

Example: a b + c *

Very similar to prefix
expression evaluation
algorithm

Tree Traversal

 used to print out the data in a tree in a certain
order

 Pre-order traversal

 Print the data at the root

 Recursively print out all data in the left subtree

 Recursively print out all data in the right subtree

Preorder, Postorder and Inorder

• Preorder traversal
• node, left, right

• prefix expression
• ++a*bc*+*defg

Preorder, Postorder and Inorder

• Postorder traversal
• left, right, node

• postfix expression

• abc*+de*f+g*+

• Inorder traversal

• left, node, right

• infix expression

• a+b*c+d*e+f*g

Example: Unix Directory Traversal
PreOrder PostOrder

Binary Search Trees / Slide 19

Recursive algorithm to print all nodes in a tree

Preorder, Postorder and Inorder Pseudo Code

Binary Trees

• A tree in which no node can have more than two children

• The depth of an “average” binary tree is considerably smaller than N,
even though in the worst case, the depth can be as large as N – 1.

typical
binary tree

Worst-case
binary tree

Node Struct of Binary Tree

 Possible operations on the Binary Tree ADT

 Parent, left_child, right_child, sibling, root, etc

 Implementation

 Because a binary tree has at most two children, we can
keep direct pointers to them

Binary Search Trees (BST)

• A data structure for efficient searching, inser-tion
and deletion (dictionary operations)

• All operations in worst-case O(log n) time

• Binary search tree property

• For every node x:

• All the keys in its left
subtree are smaller than
the key value in x

• All the keys in its right
subtree are larger than the
key value in x

Binary Search Trees

A binary search tree

Not a binary search tree

Example:

Tree height = 4

Key requirement of a BST: all the keys in a BST are
distinct, no duplication

Binary Search Trees

• Average depth of a node is O(log N)

• Maximum depth of a node is O(N)

(N = the number of nodes in the tree)

The same set of keys may have different BSTs

Binary Search Trees / Slide 26

Binary search tree class



Searching BST

Example: Suppose T is the tree being searched:

• If we are searching for 15, then we are done.

• If we are searching for a key < 15, then we should
search in the left subtree.

• If we are searching for a key > 15, then we should
search in the right subtree.

Search (contains)

• contains (x, t) : return a pointer to the node that has
key x in tree rooted at t, or NULL if there is no such
node

• Time complexity: O(height of the tree)

Inorder Traversal of BST

• Inorder traversal of BST prints out all the keys in
sorted order

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

findMin/ findMax
 Goal: return the node containing the smallest (largest) key in the

tree

 Algorithm: Start at the root and go left (right) as long as there is a
left (right) child. The stopping point is the smallest (largest) element

 Time complexity = O(height of the tree)

Insertion
To insert(X):

 Proceed down the tree as you would for search.

 If x is found, do nothing (or update some secondary
record)

 Otherwise, insert X at the last spot on the path traversed

 Time complexity = O(height of the tree)

X = 13

Another example of insertion

Example: insert(11). Show the path taken and the position at
which 11 is inserted.

Note: There is a unique place where a new key can be inserted.

Code for insertion (from text)

Insert is a recursive (helper) function that takes a pointer to a
node and inserts the key in the subtree rooted at that node.

Deletion under Different Cases

 Case 1: the node is a leaf

 Delete it immediately

 Case 2: the node has one child

 Adjust a pointer from the parent to bypass that node

Deletion Case 3

 Case 3: the node has 2 children
 Replace the key of that node with the minimum element

at the right subtree

 Delete that minimum element

 Has either no child or only right child because if it has
a left child, that left child would be smaller and would
have been chosen. So invoke case 1 or 2.

 Time complexity = O(height of the tree)

Code for Deletion

Code for findMin:

Code for Deletion

Summary of BST
 all the dictionary operations (search, insert and delete) as well as

deleteMin, deleteMax etc. can be performed in O(h) time where h is the
height of a binary search tree.

Good news:

 h is on average O(log n) (if the keys are inserted in a random order).

 code for implementing dictionary operations is simple.

Bad news:

 worst-case is O(n).

 some natural order of insertions (sorted in ascending or descending order)
lead to O(n) height. (tree keeps growing along one path instead of
spreading out.)

Solution:

 enforce some condition on the structure that keeps the tree from growing
unevenly.

