
Lec 11                                                  Feb 17 
 

Mid-term 1: Feb 24 or 26?   

 

 Topics: (Chapter 4 of text) 

  binary Trees 

  expression trees 

  Binary Search Trees 

 

  



Trees 
 dictionary operations 

 Search, insert and delete 

 Does there exist a simple data structure for which the 
running time of dictionary operations (search, insert, 
delete) is O(log N) where N = total number of keys? 

 Arrays, linked lists, (sorted or unsorted), hash tables, 
heaps – none of them can do it. 

 

Trees 
 Basic concepts 

 Tree traversal 

 Binary tree 

 Binary search tree and its operations 

 



Trees 

A tree is a collection of nodes 

 The collection can be empty 

 (recursive definition) If not empty, a tree consists of a 
distinguished node r (the root), and zero or more 
nonempty subtrees T1, T2, ...., Tk, each of whose roots 
are connected by a directed edge from r 

 



Basic terms 

 

 

 

 

 Child and Parent 
 Every node except the root has one parent  

 A node can have an zero or more children 

 Leaves 
 Leaves are nodes with no children  

 Sibling 
 nodes with same parent 
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Implementing a tree  

   



More Terms 

 Path 

 A sequence of edges 

 Length of a path 

 number of edges on the path 

 Depth of a node 

 length of the unique path from the root to that node 



More Terms 
 

 Height of a node 
 length of the longest path from that node to a leaf 

 all leaves are at height 0 

 

 The height of a tree    = the height of the root 

 
       = the depth of the deepest leaf 

 

 Ancestor and descendant 
If there is a path from n1 to n2 

 n1 is an ancestor of n2, n2 is a descendant of n1 

 Proper ancestor and proper descendant 



Example: UNIX Directory 



Example: Expression Trees 

 

 

 

 

 

 

 

 

 

 

• Leaves are operands (constants or variables) 
• The internal nodes contain operators 
• Will not be a binary tree if some operators are not 

binary (e.g. unary minus) 



Expression Tree application 

 

 

 

 

 

 

 

• Given an expression, build the tree 

• Compilers build expression trees when parsing an 
expression that occurs in a program 

• Applications: 

• Common subexpression elimination. 



Expression to expression Tree algorithm 

Problem: Given an expression, build the tree. 

 
Solution: recall the stack based algorithm for converting infix to postfix 

expression. 

 

From postfix expression E, we can build an expression tree T. 

 

Node structure  

+ 

lchild   key     rchild 
class Tree { 

  char key; 

  Tree* lchild, rchild; 

   . . .  

 

} 



Expression to expression Tree algorithm 

 

Node structure  

+ 

lchild   key     rchild 

Constructor: 

 

Tree(char ch, Tree* lft, 

   Tree* rgt) { 

  key = ch; 

  lchild = lft; 

  rchild = rgt; 

} 

 

 Operand:  leaf node 

 

Operator: internal node 



Expression to expression Tree algorithm 

Problem: Given an expression, build the tree. 
 

Input: Postfix expression E, output: Expression tree T 
 initialize stack S; 
 for j = 0 to E.size – 1 do 
   if (E[j] is an operand) { 
    Tree t = new Tree(E[j]); 
    S.push(t*);} 
   else { 
     tree* t1 = S.pop();  
     tree* t2 = S.pop(); 
     Tree t = new(E[j], t1, t2); 
     S.push(t*); 
   } 
 

At the end, stack contains a single tree pointer, which is the pointer to the 
expression tree.  

      
  



Expression to expression Tree algorithm 

 

Example:  a b + c * 

 

  

 

  

Very similar to prefix 
expression evaluation 
algorithm 



Tree Traversal 

 used to print out the data in a tree in a certain 
order 

 

 Pre-order traversal 

 Print the data at the root 

 Recursively print out all data in the left subtree 

 Recursively print out all data in the right subtree 



Preorder, Postorder and Inorder 

•  Preorder traversal 
• node, left, right 

• prefix expression 
• ++a*bc*+*defg 



Preorder, Postorder and Inorder 

• Postorder traversal 
• left, right, node 

• postfix expression 

• abc*+de*f+g*+ 

 

• Inorder traversal 

• left, node, right 

• infix expression 

• a+b*c+d*e+f*g 

 



Example: Unix Directory Traversal 
PreOrder PostOrder 
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Recursive algorithm to print all nodes in a tree 



Preorder, Postorder and Inorder Pseudo Code 



Binary Trees 

• A tree in which no node can have more than two children 

 
 

 

 

• The depth of an “average” binary tree is considerably smaller than N, 
even though in the worst case, the depth can be as large as N – 1. 

typical 
binary tree 

Worst-case 
binary tree 



Node Struct of Binary Tree 

 Possible operations on the Binary Tree ADT 

 Parent, left_child, right_child, sibling, root, etc 

 

 Implementation 

 Because a binary tree has at most two children, we can 
keep direct pointers to them 



Binary Search Trees (BST) 

• A data structure for efficient searching, inser-tion 
and deletion (dictionary operations) 

• All operations in worst-case O(log n) time 

• Binary search tree property 

• For every node x: 

• All the keys in its left  
subtree are smaller than  
the key value in x  

• All the keys in its right  
subtree are larger than the  
key value in x 

 



Binary Search Trees 

  

 

 

 

 

 

 

 

A binary search tree 

Not a binary search tree 

Example: 

Tree height = 4 

 

Key requirement of a BST: all the keys in a BST are 
distinct, no duplication 



Binary Search Trees 

 

 

 

 

 

 

 

 
 

• Average depth of a node is O(log N) 

• Maximum depth of a node is O(N) 

(N = the number of nodes in the tree) 

 

The same set of keys may have different BSTs 
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Binary search tree class 

   



Searching BST 

Example: Suppose T is the tree being searched: 

• If we are searching for 15, then we are done. 

• If we are searching for a key < 15, then we should 
search in the left subtree. 

• If we are searching for a key > 15, then we should 
search in the right subtree. 





Search (contains) 

• contains (x, t) : return a pointer to the node that has 
key x in tree rooted at t, or NULL if there is no such 
node 

 

 

 

 

 

 

 

 

• Time complexity: O(height of the tree) 



Inorder Traversal of BST 

• Inorder traversal of BST prints out all the keys in 
sorted order 

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20 



findMin/ findMax 
 Goal: return the node containing the smallest (largest) key in the 

tree 

 Algorithm: Start at the root and go left (right) as long as there is a 
left (right) child. The stopping point is the smallest (largest) element 

 

 

 

 

 

 

 

 

 

 

 Time complexity = O(height of the tree) 



Insertion 
To insert(X): 

 Proceed down the tree as you would for search. 

 If x is found, do nothing (or update some secondary 
record) 

 Otherwise, insert X at the last spot on the path traversed 

 

 

 

 

 

 

 Time complexity = O(height of the tree) 

X = 13 



Another example of insertion 

 

Example: insert(11). Show the path taken and the position at 
which 11 is inserted. 

Note: There is a unique place where a new key can be inserted.  



Code for insertion (from text) 

 

Insert is a recursive (helper) function that takes a pointer to a 
node and inserts the key in the subtree rooted at that node. 



Deletion under Different Cases 

 Case 1: the node is a leaf 

 Delete it immediately 

 Case 2: the node has one child 

 Adjust a pointer from the parent to bypass that node 



Deletion Case 3 

 Case 3: the node has 2 children 
 Replace the key of that node with the minimum element 

at the right subtree  

 Delete that minimum element  

 Has either no child or only right child because if it has 
a left child, that left child would be smaller and would 
have been chosen. So invoke case 1 or 2. 

 
 

 

 

 

 

 

 Time complexity = O(height of the tree) 



Code for Deletion 
 

Code for findMin: 

 

 



Code for Deletion 
 

 



Summary of BST 
  all the dictionary operations (search, insert and delete) as well as 

deleteMin, deleteMax etc. can be performed in O(h) time where h is the 
height of a binary search tree. 

Good news: 

  h is on average O(log n) (if the keys are inserted in a random order). 

  code for implementing dictionary operations is simple. 

 

Bad news: 

  worst-case is O(n). 

  some natural order of insertions (sorted in ascending or descending order) 
lead to O(n) height. (tree keeps growing along one path instead of 
spreading out.) 

 

Solution: 

  enforce some condition on the structure that keeps the tree from growing 
unevenly. 

 


